956 resultados para River monitoring network
Resumo:
In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean.
Resumo:
An integrated approach to climate change impact assessment is explored by linking established models of regional climate (SDSM), water resources (CATCHMOD) and water quality (INCA) within a single framework. A case study of the River Kennet illustrates how the system can be used to investigate aspects of climate change uncertainty, deployable water resources, and water quality dynamics in upper and lower reaches of the drainage network. The results confirm the large uncertainty in climate change scenarios and freshwater impacts due to the choice of general circulation model (GCM). This uncertainty is shown to be greatest during summer months as evidenced by large variations between GCM-derived projections of future tow river flows, deployable yield from groundwater, severity of nutrient flushing episodes, and Long-term trends in surface water quality. Other impacts arising from agricultural land-use reform or delivery of EU Water Framework Directive objectives under climate change could be evaluated using the same framework. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.
Resumo:
Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.
Resumo:
The field site network (FSN) plays a central role in conducting joint research within all Assessing Large-scale Risks for biodiversity with tested Methods (ALARM) modules and provides a mechanism for integrating research on different topics in ALARM on the same site for measuring multiple impacts on biodiversity. The network covers most European climates and biogeographic regions, from Mediterranean through central European and boreal to subarctic. The project links databases with the European-wide field site network FSN, including geographic information system (GIS)-based information to characterise the test location for ALARM researchers for joint on-site research. Maps are provided in a standardised way and merged with other site-specific information. The application of GIS for these field sites and the information management promotes the use of the FSN for research and to disseminate the results. We conclude that ALARM FSN sites together with other research sites in Europe jointly could be used as a future backbone for research proposals
Resumo:
The effectiveness of development assistance has come under renewed scrutiny in recent years. In an era of growing economic liberalisation, research organisations are increasingly being asked to account for the use of public funds by demonstrating achievements. However, in the natural resources (NR) research field, conventional economic assessment techniques have focused on quantifying the impact achieved rather understanding the process that delivered it. As a result, they provide limited guidance for planners and researchers charged with selecting and implementing future research. In response, “pathways” or logic models have attracted increased interest in recent years as a remedy to this shortcoming. However, as commonly applied these suffer from two key limitations in their ability to incorporate risk and assess variance from plan. The paper reports the results of a case study that used a Bayesian belief network approach to address these limitations and outlines its potential value as a tool to assist the planning, monitoring and evaluation of development-orientated research.
Resumo:
Decoding emotional prosody is crucial for successful social interactions, and continuous monitoring of emotional intent via prosody requires working memory. It has been proposed by Ross and others that emotional prosody cognitions in the right hemisphere are organized in an analogous fashion to propositional language functions in the left hemisphere. This study aimed to test the applicability of this model in the context of prefrontal cortex working memory functions. BOLD response data were therefore collected during performance of two emotional working memory tasks by participants undergoing fMRI. In the prosody task, participants identified the emotion conveyed in pre-recorded sentences, and working memory load was manipulated in the style of an N-back task. In the matched lexico-semantic task, participants identified the emotion conveyed by sentence content. Block-design neuroimaging data were analyzed parametrically with SPM5. At first, working memory for emotional prosody appeared to be right-lateralized in the PFC, however, further analyses revealed that it shared much bilateral prefrontal functional neuroanatomy with working memory for lexico-semantic emotion. Supplementary separate analyses of males and females suggested that these language functions were less bilateral in females, but their inclusion did not alter the direction of laterality. It is concluded that Ross et al.'s model is not applicable to prefrontal cortex working memory functions, that evidence that working memory cannot be subdivided in prefrontal cortex according to material type is increased, and that incidental working memory demands may explain the frontal lobe involvement in emotional prosody comprehension as revealed by neuroimaging studies. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper assesses the way in which an actor network presiding over the management of the River Wye has stabilized through accepting a particular view on the issue of navigation. The paper provides an account of how the network was challenged by a dissonant actor who, through reviving an old company, developed a counter network. It is argued that network stabilization is a form of consensus-building and it is contended that the way in which an issue is defined is crucial in terms of the successful enrolment of actors. The paper illustrates some of the conflicts and complexities encountered in resource planning, suggesting that research of this nature should trace actors back through time as well as through space if dynamics between actors involved in rural planning and management are to be effectively understood.
Resumo:
In any wide-area distributed system there is a need to communicate and interact with a range of networked devices and services ranging from computer-based ones (CPU, memory and disk), to network components (hubs, routers, gateways) and specialised data sources (embedded devices, sensors, data-feeds). In order for the ensemble of underlying technologies to provide an environment suitable for virtual organisations to flourish, the resources that comprise the fabric of the Grid must be monitored in a seamless manner that abstracts away from the underlying complexity. Furthermore, as various competing Grid middleware offerings are released and evolve, an independent overarching monitoring service should act as a corner stone that ties these systems together. GridRM is a standards-based approach that is independent of any given middleware and that can utilise legacy and emerging resource-monitoring technologies. The main objective of the project is to produce a standardised and extensible architecture that provides seamless mechanisms to interact with native monitoring agents across heterogeneous resources.
Resumo:
In this study, change in rainfall, temperature and river discharge are analysed over the last three decades in Central Vietnam. Trends and rainfall indices are evaluated using non-parametric tests at different temporal levels. To overcome the sparse locally available network, the high resolution APHRODITE gridded dataset is used in addition to the existing rain gauges. Finally, existing linkages between discharge changes and trends in rainfall and temperature are explored. Results are indicative of an intensification of rainfall (+15%/decade), with more extreme and longer events. A significant increase in winter rainfall and a decrease in consecutive dry days provides strong evidence for a lengthening wet season in Central Vietnam. In addition, trends based on APHRODITE suggest a strong orographic signal in winter and annual trends. These results underline the local variability in the impacts of climatic change at the global scale. Consequently, it is important that change detection investigations are conducted at the local scale. A very weak signal is detected in the trend of minimum temperature (+0.2°C/decade). River discharge trends show an increase in mean discharge (31 to 35%/decade) over the last decades. Between 54 and 74% of this increase is explained by the increase in precipitation. The maximum discharge also responds significantly to precipitation changes leading to a lengthened wet season and an increase in extreme rainfall events. Such trends can be linked with a likely increase in floods in Central Vietnam, which is important for future adaptation planning and management and flood preparedness in the region. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
In recent years, there has been an increasing interest in the adoption of emerging ubiquitous sensor network (USN) technologies for instrumentation within a variety of sustainability systems. USN is emerging as a sensing paradigm that is being newly considered by the sustainability management field as an alternative to traditional tethered monitoring systems. Researchers have been discovering that USN is an exciting technology that should not be viewed simply as a substitute for traditional tethered monitoring systems. In this study, we investigate how a movement monitoring measurement system of a complex building is developed as a research environment for USN and related decision-supportive technologies. To address the apparent danger of building movement, agent-mediated communication concepts have been designed to autonomously manage large volumes of exchanged information. In this study, we additionally detail the design of the proposed system, including its principles, data processing algorithms, system architecture, and user interface specifics. Results of the test and case study demonstrate the effectiveness of the USN-based data acquisition system for real-time monitoring of movement operations.
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
Resumo:
Satellite-based (e.g., Synthetic Aperture Radar [SAR]) water level observations (WLOs) of the floodplain can be sequentially assimilated into a hydrodynamic model to decrease forecast uncertainty. This has the potential to keep the forecast on track, so providing an Earth Observation (EO) based flood forecast system. However, the operational applicability of such a system for floods developed over river networks requires further testing. One of the promising techniques for assimilation in this field is the family of ensemble Kalman (EnKF) filters. These filters use a limited-size ensemble representation of the forecast error covariance matrix. This representation tends to develop spurious correlations as the forecast-assimilation cycle proceeds, which is a further complication for dealing with floods in either urban areas or river junctions in rural environments. Here we evaluate the assimilation of WLOs obtained from a sequence of real SAR overpasses (the X-band COSMO-Skymed constellation) in a case study. We show that a direct application of a global Ensemble Transform Kalman Filter (ETKF) suffers from filter divergence caused by spurious correlations. However, a spatially-based filter localization provides a substantial moderation in the development of the forecast error covariance matrix, directly improving the forecast and also making it possible to further benefit from a simultaneous online inflow error estimation and correction. Additionally, we propose and evaluate a novel along-network metric for filter localization, which is physically-meaningful for the flood over a network problem. Using this metric, we further evaluate the simultaneous estimation of channel friction and spatially-variable channel bathymetry, for which the filter seems able to converge simultaneously to sensible values. Results also indicate that friction is a second order effect in flood inundation models applied to gradually varied flow in large rivers. The study is not conclusive regarding whether in an operational situation the simultaneous estimation of friction and bathymetry helps the current forecast. Overall, the results indicate the feasibility of stand-alone EO-based operational flood forecasting.