825 resultados para Risk Assessment Code


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 1979."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"EPA/600/8-90/064."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"ANL/RAS 75-35."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subtitle varies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"This publication was supported by Cooperative Agreement Number U50/CCU513516 from the U.S. Centers for Disease Control and Prevention."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prepared for Illinois Dept. of Energy and Natural Resources, Energy and Environmental Affairs Division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslides often occur on slopes rendered unstable by underlying geology, geomorphology, hydrology, weather-climate, slope modifications, or deforestation. Unfortunately, humans commonly exacerbate such unstable conditions through careless or imprudent development practices. Due to local geology, geography, and climatic conditions, Puget Sound of western Washington State is especially landslide-prone. Despite this known issue, detailed analyses of landslide risks for specific communities are few. This study aims to classify areas of high landslide risk on the westerly bluffs of the 7.5 minute Freeland quadrangle based on a combined approach: mapping using LiDAR imagery and the Landform Remote Identification Model (LRIM) to identify landslides, and implementation of the Shallow Slope Stability Model (SHALSTAB) to establish a landslide exceedance probability. The objective is to produce a risk assessment from two shallow landslide scenarios: (1) minimum bluff setback and runout and (2) maximum bluff setback and runout. A simple risk equation that takes into account the probability of hazard occurrence with physical and economic vulnerability (van Westen, 2004) was applied to both scenarios. Results indicate an possible total loss as much as $32.6b from shallow landslides, given a setback of 12 m and a runout of 235 m.