958 resultados para Riesz fractional advection–dispersion equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of differentiation and integration to non-integer order has its origins in the seventeen century. However, only in the second-half of the twenty century appeared the first applications related to the area of control theory. In this paper we consider the study of a heat diffusion system based on the application of the fractional calculus concepts. In this perspective, several control methodologies are investigated and compared. Simulations are presented assessing the performance of the proposed fractional-order algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional calculus (FC) is no longer considered solely from a mathematical viewpoint, and is now applied in many emerging scientific areas, such as electricity, magnetism, mechanics, fluid dynamics, and medicine. In the field of dynamical systems, significant work has been carried out proving the importance of fractional order mathematical models. This article studies the electrical impedance of vegetables and fruits from a FC perspective. From this line of thought, several experiments are developed for measuring the impedance of botanical elements. The results are analyzed using Bode and polar diagrams, which lead to electrical circuit models revealing fractional-order behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article studies several Fractional Order Control algorithms used for joint control of a hexapod robot. Both Padé and series approximations to the fractional derivative are considered for the control algorithm. The walking performance is evaluated through two indices: The mean absolute density of energy used per unit distance travelled, and the control effort. A set of simulation experiments reveals the influence of the different approximations upon the proposed indices. The results show that the fractional proportional and derivative algorithm, implemented using the Padé approximation with a small number of terms, gives the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the pseudoinverse control, robots with kinematical redundancy exhibit an undesirable chaotic joint motion which leads to an erratic behavior. This paper studies the complexity of fractional dynamics of the chaotic response. Fourier and wavelet analysis provides a deeper insight, helpful to know better the lack of repeatability problem of redundant manipulators. This perspective for the study of the chaotic phenomena will permit the development of superior trajectory control algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of fractional-order controllers is currently one of the most promising fields of research. However, most of the work in this area addresses the case of linear systems. This paper reports on the analysis of fractional-order control of nonlinear systems. The performance of discrete fractional-order PID controllers in the presence of several nonlinearities is discussed. Some results are provided that indicate the superior robustness of such algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a modified version of the classical Van der Pol oscillator is proposed, introducing fractional-order time derivatives into the state-space model. The resulting fractional-order Van der Pol oscillator is analyzed in the time and frequency domains, using phase portraits, spectral analysis and bifurcation diagrams. The fractional-order dynamics is illustrated through numerical simulations of the proposed schemes using approximations to fractional-order operators. Finally, the analysis is extended to the forced Van der Pol oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maxwell equations constitute a formalism for the development of models describing electromagnetic phenomena. The four Maxwell laws have been adopted successfully in many applications and involve only the integer order differential calculus. Recently, a closer look for the cases of transmission lines, electrical motors and transformers, that reveal the so-called skin effect, motivated a new perspective towards the replacement of classical models by fractional-order mathematical descriptions. Bearing these facts in mind this paper addresses the concept of static fractional electric potential. The fractional potential was suggested some years ago. However, the idea was not fully explored and practical methods of implementation were not proposed. In this line of thought, this paper develops a new approximation algorithm for establishing the fractional order electrical potential and analyzes its characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose the use of the least-squares based methods for obtaining digital rational approximations (IIR filters) to fractional-order integrators and differentiators of type sα, α∈R. Adoption of the Padé, Prony and Shanks techniques is suggested. These techniques are usually applied in the signal modeling of deterministic signals. These methods yield suboptimal solutions to the problem which only requires finding the solution of a set of linear equations. The results reveal that the least-squares approach gives similar or superior approximations in comparison with other widely used methods. Their effectiveness is illustrated, both in the time and frequency domains, as well in the fractional differintegration of some standard time domain functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proceedings of the International Conference on Computational Cybernetics, Vienna University of Technology, August 30 - September 1, 2004

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of mathematical methods and computer algorithms in the analysis of economic and financial data series aims to give empirical descriptions of the hidden relations between many complex or unknown variables and systems. This strategy overcomes the requirement for building models based on a set of ‘fundamental laws’, which is the paradigm for studying phenomena usual in physics and engineering. In spite of this shortcut, the fact is that financial series demonstrate to be hard to tackle, involving complex memory effects and a apparently chaotic behaviour. Several measures for describing these objects were adopted by market agents, but, due to their simplicity, they are not capable to cope with the diversity and complexity embedded in the data. Therefore, it is important to propose new measures that, on one hand, are highly interpretable by standard personal but, on the other hand, are capable of capturing a significant part of the dynamical effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.