977 resultados para Resource Utilization
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
In this paper the authors intend to demonstrate the utilization of remote experimentation (RE) using mobile computational devices in the Science areas of the elementary school, with the purpose to develop practices that will help in the assimilation process of the subjects taught in classroom seeking to interlink them with the daily students? activities. Allying mobility with RE we intend to minimize the space-temporal barrier giving more availability and speed in the information access. The implemented architecture utilizes technologies and freely distributed softwares with open code resources besides remote experiments developed in the Laboratory of Remote Experimentation (RExLab) of Federal University of Santa Catarina (UFSC), in Brazil, through the physical computation platform of the ?open hardware of construction of our own. The utilization of open code computational tools and the integration of hardware to the 3D virtual worlds, accessible through mobile devices, give to the project an innovative face with a high potential for reproducibility and reusability.
Resumo:
Technology plays a double role in Education: it can act as a facilitator in the teaching/learning process and it can be the very subject of that process in Science & Engineering courses. This is especially true when students perform laboratory activities where they interact with equipment and objects under experimentation. In this context, technology can also play a facilitator role if it allows students to perform experiments in a remote fashion, through the Internet, in a so-called weblab or remote laboratory. No doubt, the Internet has been revolutionizing the educational process in many aspects, and it can be stated that remote laboratories are just an angle of that on-going revolution. As any other educational tool or resource, the i) pedagogical approach and the ii) technology used in the development of a remote laboratory can dictate its general success or its ephemeral existence. By pedagogical approach we consider the way remote experiments address the process by which students acquire experimental skills and link experimental results to theoretical concepts. In respect to technology, we discuss different specification and implementation alternatives, to show the case where the adoption of a family of standards would positively contribute to a larger acceptance and utilization of remote laboratories, and also to a wider collaboration in their development.
Resumo:
This paper presents a biased random-key genetic algorithm for the resource constrained project scheduling problem. The chromosome representation of the problem is based on random keys. Active schedules are constructed using a priority-rule heuristic in which the priorities of the activities are defined by the genetic algorithm. A forward-backward improvement procedure is applied to all solutions. The chromosomes supplied by the genetic algorithm are adjusted to reflect the solutions obtained by the improvement procedure. The heuristic is tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
When performing a full calculation within the standard model (SM) or its extensions, it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge fields. Unfortunately, the literature is plagued with differing signs and notations. We present all SM Feynman rules, including ghosts, in a convention-independent notation, and we table the conventions in close to 40 books and reviews.
Resumo:
This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach was tested on a set of standard problems taken from the literature and compared with other approaches. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
As organizações são entidades de natureza sistémica, composta, na sua maioria por várias pessoas que interagindo entre si, se propõem atingir objetivos comuns. Têm, frequentemente, de responder a alterações da envolvente externa através de processos de mudança organizacional, sendo fundamentalmente adaptativas, pois, para sobreviver, precisam de se reajustar continuamente às condições mutáveis do meio. O sucesso das organizações depende da sua capacidade de interação com o meio envolvente, ou seja, da sua capacidade de inovar e operar local ou globalmente, criando novas oportunidades de negócio que importa aproveitar. As tecnologias e os sistemas de informação e a forma como são utilizadas são fatores determinantes nesses processos de evolução e mudança. É necessário que a estratégia de TI esteja alinhada com os objetivos de negócio e que a sua utilização contribua para aumentos de produtividade e de eficiência no seu desempenho. Este trabalho descreve a análise, conceção, seleção e implementação de um Sistema de Informação na Portgás, S.A. baseado de um ERP - Enterprise Resource Planning, capaz de suportar a mudança organizacional e melhorar o desempenho global da organização. Promovendo numa primeira fase um crescimento exponencial do negócio e, de seguida, a adaptação da organização ao mercado concorrencial. O caso descreve o trabalho realizado pelo candidato e por equipas internas e externas, de levantamentos de requisitos gerais, técnicos e funcionais, desenvolvimento de um caderno de encargos, seleção, implementação e exploração de um ERP SAP. A apresentação e discussão do caso são enquadradas numa revisão de literatura sobre o papel das TI nos processos de mudança organizativa, alinhamento estratégico e vantagem competitiva das TI, contributo das TI para o aumento da produtividade, processos adoção e difusão das TI, fatores críticos de sucesso e BPM –Business Process Management
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
RESUMO - Assiste-se a um crescimento exponencial das despesas em saúde, quer na Europa como nos Estados Unidos. Em Portugal, os gastos totais com a saúde ascenderam a 10,2% do PIB, em 2006, contra os 8,8% registados no início da década anterior. É importante perceber o que motiva este crescimento quer em termos globais, quer no que diz respeito ao consumo de recursos, bem como até em termos da despesa pública. Este projecto tem dois objectivos fundamentais: em primeiro lugar, contribuir para o estudo dos factores determinantes da procura de cuidados de saúde em Portugal e, consequentemente, determinar as elasticidades procura – preço para diferentes tipos de cuidados de saúde. Metodologia: Estudo observacional baseado na análise empírica de dados administrativos (claims) respeitantes à utilização dos cuidados de saúde por parte de 12.230 indivíduos detentores de um plano de seguro de saúde individual, numa seguradora privada em Portugal. As elasticidades procura – preço para os diferentes tipos de cuidados de saúde obtiveram-se utilizando as variações percentuais das quantidades dos diferentes cuidados de saúde, antes e depois da variação do preço pago pelo indivíduo, para cada tipo de cuidado de saúde. Resultados: De acordo com a teoria económica tradicional o aumento do preço a pagar reduz o consumo de cuidados de saúde, e a procura é elástica, ou seja, os valores da elasticidade procura – preço obtidos são superiores a 1, em valor absoluto, logo o aumento do preço levou a uma redução mais do que proporcional das quantidades procuradas. A procura de cuidados de saúde em ambulatório é mais sensível à variação do preço do que a procura de cuidados de internamento. ------- ABSTRACT - We are witnessing an exponential growth of health care expenditures around the world. In Portugal, the total expenditure on health amounted to 10.2% of GDP in 2006, against 8.8% at the beginning of previous decade. It is important to understand what motivates this growth both in overall terms, with respect to resource consumption, and even in terms of public spending. This study was designed two achieve two objectives: first, to contribute to the study of demand for health care and, more specifically, to analyze the effect of price changes on the utilization of health care services; and secondly, to estimate the demand elasticity for different types of heath care. Methodology: Observational study based on empirical analysis of administrative data (claims) from a private health insurance Company in Portugal. The sample used had information regarding 12.230 individuals. Demand elasticity for the different types of health care services was obtained by the quotient between the percentage changes in the quantity of health care services, before and after the change in the price paid by the corresponding percentage change in the price. Results: This study showed that, for all medical services, price increases were associated with reductions in the quantity of care consumed as predicted by neoclassical demand theory, and we are in the presence of an elastic demand. This means that price elasticity is greater than 1 in absolute value so the increase in the price led to a more than proportional reduction in the quantity demanded. Demand elasticity was more responsive to changes in the price of specialist and emergency care than to changes in the price of inpatient care.
Resumo:
The proper disposal of the several types of wastes produced in industrial activities increases production costs. As a consequence, it is common to develop strategies to reuse these wastes in the same process and in different processes or to transform them for use in other processes. This work combines the needs for new synthesis methods of nanomaterials and the reduction of production cost using wastes from citrine juice (orange, lime, lemon and mandarin) to produce a new added value product, green zero-valent iron nanoparticles that can be used in several applications, including environmental remediation. The results indicate that extracts of the tested fruit wastes (peel, albedo and pulp fractions) can be used to produce zero-valent iron nanoparticles (nZVIs). This shows that these wastes can be an added value product. The resulting nZVIs had sizes ranging from 3 up to 300 nm and distinct reactivities (pulp > peel > albedo extracts). All the studied nanoparticles did not present a significant agglomeration/settling tendency when compared to similar nanoparticles, which indicates that they remain in suspension and retain their reactivity.
Resumo:
Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.
Resumo:
Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.