843 resultados para Reputation mechanisms
Resumo:
Lipid bodies, inducible lipid-rich cytoplasmic inclusions, are characteristically abundant in cells associated with inflammation, including eosinophils. Here we reviewed the formation and function of lipid bodies in human eosinophils. We now have evidence that the formation of lipid bodies is not attributable to adverse mechanisms, but is centrally mediated by specific signal transduction pathways. Arachidonic acid and other cis fatty acids by an NSAID-inhibitable process, diglycerides, and PAF by a 5-lipoxygenase dependent pathway are potent stimulators of lipid body induction. Lipid body formation develops rapidly by processes that involve PKC, PLC, and de novo mRNA and protein synthesis. These structures clearly serve as repositoires of arachidonyl-phospholipids and are more than inert depots. Specific enzymes, including cytosolic phospholipase A2, MAP kinases, lipoxygenases and cyclooxygenases, associate with lipid bodies. Lipid bodies appear to be dynamic, organelle-like structures involved in intracellular pathways of lipid mobilization and metabolism. Indeed, increases in lipid body numbers correlated with enhanced production of both lipoxygenase- and cyclooxygenase-derived eicosanoids. We hypothesize that lipid bodies are distinct inducible sites for generating eicosanoids as paracrine mediators with varied activities in inflammation. The capacity of lipid body formation to be specifically and rapidly induced in leukocytes enhances eicosanoid mediator formation, and conversely pharmacologic inhibition of lipid body induction represents a potential novel and specific target for anti-inflammatory therapy.
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
The multiplicity of cell death mechanisms induced by neonatal hypoxia-ischemia makes neuroprotective treatment against neonatal asphyxia more difficult to achieve. Whereas the roles of apoptosis and necrosis in such conditions have been studied intensively, the implication of autophagic cell death has only recently been considered. Here, we used the most clinically relevant rodent model of perinatal asphyxia to investigate the involvement of autophagy in hypoxic-ischemic brain injury. Seven-day-old rats underwent permanent ligation of the right common carotid artery, followed by 2 hours of hypoxia. This condition not only increased autophagosomal abundance (increase in microtubule-associated protein 1 light chain 3-11 level and punctuate labeling) but also lysosomal activities (cathepsin D, acid phosphatase, and beta-N-acetylhexosaminidase) in cortical and hippocampal CA3-damaged neurons at 6 and 24 hours, demonstrating an increase in the autophagic flux. In the cortex, this enhanced autophagy may be related to apoptosis since some neurons presenting a high level of autophagy also expressed apoptotic features, including cleaved caspase-3. On the other hand, enhanced autophagy in CA3 was associated with a more purely autophagic cell death phenotype. In striking contrast to CA3 neurons, those in CA1 presented only a minimal increase in autophagy but strong apoptotic characteristics. These results suggest a role of enhanced autophagy in delayed neuronal death after severe hypoxia-ischemia that is differentially linked to apoptosis according to the cerebral region.
Resumo:
PURPOSE: Corticosteroids have recorded beneficial clinical effects and are widely used in medicine. In ophthalmology, besides their treatment benefits, side effects, including ocular toxicity have been observed especially when intraocular delivery is used. The mechanism of these toxic events remains, however, poorly understood. In our present study, we investigated the mechanisms and potential pathways of corticosteroid-induced retinal cell death. METHODS: Rats were sacrificed 24 h and 8 days after an intravitreous injection of 1 microl (40 microg) of Kenacort Retard. The eyes were processed for ultra structure analysis and detection of activated caspase-3, cytochrome-C, apoptosis-inducing factor (AIF), LEI-L-Dnase II, terminal transferase dUTP nick end labeling (TUNEL), and microtubule-associated protein 1-light chain 3 (MAP-LC3). In vitro, rat retinal pigment epithelial cells (RPE), retinal Müller glial cells (RMG) and human ARPE-19 cells were treated with triamcinolone acetonide (TA) or other glucocorticoids. Cell viability was quantified by 3-(4,5-dimethylthiazol-2-yl)-2,5 phenyltetrazolium bromide test (MTT) assay and cell counts. Nuclei staining, TUNEL assay, annexin-V binding, activated caspase-3 and lactate dehydrogenase (LDH) production characterized cell death. Localization of cytochrome-C, AIF, LEI-and L-Dnase II, and staining with MAP-LC3 or monodansylcadaverine were also carried out. Finally, ARPE-19 cells transfected with AIP-1/Alix were exposed to TA. RESULTS: In vitro incubation of retinal cell in the presence of corticosteroids induced a specific and dose-dependent reduction of cell viability. These toxic events were not associated with the anti-inflammatory activity of these compounds but depended on the hydro solubility of their formulation. Before cell death, extensive cytoplasmic vacuolization was observed in the retinal pigment epithelial (RPE) cells in vivo and in vitro. The cells however, did not show known caspase-dependent or caspase-independent apoptotic reactions. These intracellular vacuoles were negative for MAP-LC3 but some stained positive for monodansylcadaverine. Furthermore, over expression of AIP-1/Alix inhibited RPE cell death. CONCLUSIONS: These observations suggest that corticosteroid-induced retinal cell death may be carried out mainly through a paraptosis pathway.
Resumo:
Quartz veins ranging in size from less than 50 cm length and 5 cm width to greater than 10 m in length and 5 m in width are found throughout the Central Swiss Alps. In some cases, the veins are completely filled with milky quartz, while in others, sometimes spectacular void-filling quartz crystals are found. The style of vein filling and size is controlled by host rock composition and deformation history. Temperatures of vein formation, estimated using stable isotope thermometry and mineral equilibria, cover a range of 450 degrees C down to 150 degrees C. Vein formation started at 18 to 20 Ma and continued for over 10 My. The oxygen isotope values of quartz veins range from 10 to 20 permil, and in almost all cases are equal to those of the hosting lithology. The strongly rock-buffered veins imply a low fluid/rock ratio and minimal fluid flow. In order to explain massive, nearly morromineralic quartz formation without exceptionally large fluid fluxes, a mechanism of differential pressure and silica diffusion, combined with pressure solution, is proposed for early vein formation. Fluid inclusions and hydrous minerals in late-formed veins have extremely low delta D values, consistent with meteoric water infiltration. The change from rock-buffered, static fluid to infiltration from above can be explained in terms of changes in the large-scale deformation style occurring between 20 and 15 Ma. The rapid cooling of the Central Alps identified in previous studies may be explained in part, by infiltration of cold meteoric waters along fracture systems down to depths of 10 km or more. An average water flux of 0.15 cm 3 cm(-2)yr(-1) entering the rock and reemerging heated by 40 degrees C is sufficient to cool rock at 10 km depth by 100 degrees C in 5 million years. The very negative delta D values of < -130 permil for the late stage fluids are well below the annual average values measured in meteoric water in the region today. The low fossil delta D values indicate that the Central Alps were at a higher elevation in the Neogene. Such a conclusion is supported by an earlier work, where a paleoaltitude of 5000 meters was proposed on the basis of large erratic boulders found at low elevations far from their origin.
Resumo:
To establish an insecticidal resistance surveillance program, Culex quinquefasciatus mosquitoes from São Paulo, Brazil, were colonized (PIN95 strain) and analyzed for levels of resistance. The PIN95 strain showed low levels of resistance to organophosphates [malathion (3.3-fold), fenitrothion (11.2-fold)] and a carbamate [propoxur (3.0-fold)]. We also observed an increase of 7.4 and 9.9 in a and b esterase activities, respectively, when compared with the reference IAL strain. An alteration in the sensitivity of acetylcholinesterase to insecticide inhibition was also found in the PIN95 mosquitoes. The resistant allele (Ace.1R), however, was found at low frequencies (0.12) and does not play an important role in the described insecticide resistance. One year later, Cx. quinquefasciatus mosquitoes were collected (PIN96 strain) at the same site and compared to the PIN95 strain. The esterase activity patterns observed for the PIN96 strain were similar to those of the PIN95 mosquitoes. However the occurrence of the Ace.1R allele was statistically higher in the PIN96 strain. The results show that esterase-based insecticide resistance was established in the PIN95 Cx. quinquefasciatus population and that an acethylcholinesterase based resistant mechanism has been selected for. A continuous monitoring of this phenomenon is fundamental for rational mosquito control and insecticide application programs.
Resumo:
Antigenic variation in Trypanosoma brucei is a highly sophisticated survival strategy involving switching between the transcription of one of an estimated thousand variant surface glycoprotein (VSG) genes. Switching involves either transcriptional control, resulting in switching between different VSG expression sites; or DNA rearrangement events slotting previously inactive VSG genes into an active VSG expression site. In recent years, considerable progress has been made in techniques allowing us to genetically modify infective bloodstream form trypanosomes. This is allowing us to reengineer VSG expression sites, and look at the effect on the mechanisms subsequently used for antigenic variation. We can now begin a dissection of a highly complicated survival strategy mediated by many different mechanisms operating simultaneously.
Mechanisms of reproductive isolation between an ant species of hybrid origin and one of its parents.
Resumo:
The establishment of new species by hybridization is difficult because it requires the development of reproductive isolation (RI) in sympatry to escape the homogenizing effects of gene flow from the parental species. Here we investigated the role of two pre- and two postzygotic mechanisms of RI in a system comprising two interdependent Pogonomyrmex harvester ant lineages (the H1 and H2 lineages) of hybrid origin and one of their parental species (P. rugosus). Similar to most other ants, P. rugosus is characterized by an environmental system of caste determination with female brood developing either into queens or workers depending on nongenetic factors. By contrast, there is a strong genetic component to caste determination in the H1 and H2 lineages because the developmental fate of female brood depends on the genetic origin of the parents, with interlineage eggs developing into workers and intralineage eggs developing into queens. The study of a mixed mating aggregation revealed strong differences in mating flight timing between P. rugosus and the two lineages as a first mechanism of RI. A second important prezygotic mechanism was assortative mating. Laboratory experiments also provided support for one of the two investigated mechanisms of postzygotic isolation. The majority of offspring produced from the few matings between P. rugosus and the lineages aborted at the egg stage. This hybrid inviability was under maternal influence, with hybrids produced by P. rugosus queens being always inviable whereas a small proportion of H2 lineage queens produced large numbers of adult hybrid offspring. Finally, we found no evidence that genetic caste determination acted as a second postzygotic mechanism reducing gene flow between P. rugosus and the H lineages. The few viable P. rugosus-H hybrids were not preferentially shunted into functionally sterile workers but developed into both workers and queens. Overall, these results reveal that the nearly complete (99.5%) RI between P. rugosus and the two hybrid lineages stems from the combination of two typical prezygotic mechanisms (mating time divergence and assortative mating) and one postzygotic mechanism (hybrid inviability).
Resumo:
Résumé : Les vertébrés ont recours au système immunitaire inné et adaptatif pour combattre les pathogènes. La découverte des récepteurs Toll, il y a dix ans, a fortement augmenté l'intérêt porté à l'immunité innée. Depuis lors, des récepteurs intracellulaires tels que les membres de la famille RIG-like helicase (RLHs) et NOD-like receptor (NLRs) ont été décrits pour leur rôle dans la détection des pathogènes. L'interleukine-1 beta (IL-1β) est une cytokine pro-inflammatoire qui est synthétisée sous forme de précurseur, la proIL-1β. La proIL-1β requiert d'être clivée par la caspase-1 pour devenir active. La caspase-1 est elle-même activée par un complexe appelé inflammasome qui peut être formé par divers membres de la famille NLR. Plusieurs inflammasomes ont été décrits tels que le NALP3 inflammasome ou l'IPAF inflammasome. Dans cette étude nous avons identifié la co-chaperone SGT1 et la chaperone HSP90 comme partenaires d'interaction de NALP3. Ces deux protéines sont bien connues chez les plantes pour leurs rôles dans la régulation des gènes de résistance (gène R) qui sont structurellement apparentés à la famille NLR. Nous avons pu montrer que SGT1 et HSP90 jouent un rôle similaire dans la régulation de NALP3 et des protéines R. En effet, nous avons démontré que les deux protéines sont nécessaires pour l'activité du NALP3 inflammasome. De plus, la HSP90 est également requise pour la stabilité de NALP3. En se basant sur ces observations, nous avons proposé un modèle dans lequel SGT1 et HSP90 maintiennent NALP3 inactif mais prêt à percevoir un ligand activateur qui initierait la cascade inflammatoire. Nous avons également montré une interaction entre SGT1 et HSP90 avec plusieurs NLRs. Cette observation suggère qu'un mécanisme similaire pourrait être impliqué dans la régulation des membres de la famille des NLRs. Ces dernières années, plusieurs PAMPs mais également des DAMPs ont été identifiés comme activateurs du NALP3 inflammasome. Dans la seconde partie de cette étude, nous avons identifié la réponse au stress du réticulum endoplasmique (RE) comme nouvel activateur du NALP3 inflammasome. Cette réponse est initiée lors de l'accumulation dans le réticulum endoplasmique de protéines ayant une mauvaise conformation ce qui conduit, en autre, à l'arrêt de la synthèse de nouvelles protéines ainsi qu'une augmentation de la dégradation des protéines. Les mécanismes par lesquels la réponse du réticulum endoplasmique induit l'activation du NALP3 inflammasome doivent encore être déterminés. Summary : Vertebrates rely on the adaptive and the innate immune systems to fight pathogens. Awarness of the importance of the innate system increased with the identification of Toll-like receptors a decade ago. Since then, intracellular receptors such as the RIG-like helicase (RLH) and the NOD-like receptor (NLR) families have been described for their role in the recognition of microbes. Interleukin- 1ß (IL-1ß) is a key mediator of inflammation. This proinflammatory cytokine is synthesised as an inactive precursor that requires processing by caspase-1 to become active. Caspase-1 is, itself, activated in a complex termed the inflammasome that can be formed by members of the NLR family. Various inflammasome complexes have been described such as the IPAF and the NALP3 inflammasome. In this study, we have identified the co-chaperone SGT1 and the chaperone HSP90 as interacting partners of NALP3. SGT1 and HSP90 are both known for their role in the activity of plant resistance proteins (R proteins) which are structurally related to the NLR family. We have shown that HSP90 and SGT1 play a similar role in the regulation of NALP3 and in the regulation of plant R proteins. Indeed, we demonstrated that both HSP90 and SGT1 are essential for the activity of the NALP3 inflammasome complex. In addition, HSP90 is required for the stability of NALP3. Based on these observations, we have proposed a model in which SGT1 and HSP90 maintain NALP3 in an inactive but signaling-competent state, ready to receive an activating ligand that induces the inflammatory cascade. An interaction between several NLR members, SGTI and HSP90 was also shown, suggesting that similar mechanisms could be involved in the regulation of other NLRs. Several pathogen-associated molecular patterns (PAMPs) but also danger associated molecular patterns (DAMPs) have been identified as NALP3 activators. In the second part of this study, we have identified the ER stress response as a new NALP3 activator. The ER stress response is activated upon the accumulation of unfolded protein in the endoplasmic reticulum and results in a block in protein synthesis and increased protein degradation. The mechanisms of ER stress-mediated NALP3 activation remain to be determined.
Resumo:
Sepsis is defined as the systemic inflammatory response to an infection. The occurrence of organ dysfunction increases the severity of sepsis. Complex interactions between multiple immunomodulating mediators and various cell populations, activated secondarily to the initial infectious insult, promote the development of organ dysfunction in sepsis. Although septic organ dysfunction has long been considered as the end result of chaotic, uncontrolled and deregulated inflammatory cascades, it might instead represent an adaptive response to avoid the occurrence of irreversible tissue damage and end-organ injury. In this article, we review the major mechanisms involved in organ dysfunction during sepsis, and also present the concept of organ dysfunction as an adaptive response to the septic process.
Resumo:
Self-consciousness has mostly been approached by philosophical enquiry and not by empirical neuroscientific study, leading to an overabundance of diverging theories and an absence of data-driven theories. Using robotic technology, we achieved specific bodily conflicts and induced predictable changes in a fundamental aspect of self-consciousness by altering where healthy subjects experienced themselves to be (self-location). Functional magnetic resonance imaging revealed that temporo-parietal junction (TPJ) activity reflected experimental changes in self-location that also depended on the first-person perspective due to visuo-tactile and visuo-vestibular conflicts. Moreover, in a large lesion analysis study of neurological patients with a well-defined state of abnormal self-location, brain damage was also localized at TPJ, providing causal evidence that TPJ encodes self-location. Our findings reveal that multisensory integration at the TPJ reflects one of the most fundamental subjective feelings of humans: the feeling of being an entity localized at a position in space and perceiving the world from this position and perspective.