972 resultados para Reliability prediction
Resumo:
Dynamically reconfigurable SRAM-based field-programmable gate arrays (FPGAs) enable the implementation of reconfigurable computing systems where several applications may be run simultaneously, sharing the available resources according to their own immediate functional requirements. To exclude malfunctioning due to faulty elements, the reliability of all FPGA resources must be guaranteed. Since resource allocation takes place asynchronously, an online structural test scheme is the only way of ensuring reliable system operation. On the other hand, this test scheme should not disturb the operation of the circuit, otherwise availability would be compromised. System performance is also influenced by the efficiency of the management strategies that must be able to dynamically allocate enough resources when requested by each application. As those resources are allocated and later released, many small free resource blocks are created, which are left unused due to performance and routing restrictions. To avoid wasting logic resources, the FPGA logic space must be defragmented regularly. This paper presents a non-intrusive active replication procedure that supports the proposed test methodology and the implementation of defragmentation strategies, assuring both the availability of resources and their perfect working condition, without disturbing system operation.
Resumo:
This paper studies the describing function (DF) of systems consisting in a mass subjected to nonlinear friction. The friction force is composed in three components namely, the viscous, the Coulomb and the static forces. The system dynamics is analyzed in the DF perspective revealing a fractional-order behaviour. The reliability of the DF method is evaluated through the signal harmonic content and the limit cycle prediction.
Resumo:
Nonlinear Dynamics, Vol. 29
Resumo:
Proceedings of the European Control Conference, ECC’01, Porto, Portugal, September 2001
Resumo:
This work is a contribution to the definition and assessment of structural robustness. Special emphasis is given to reliability of reinforced concrete structures under corrosion of longitudinal reinforcement. On this communication several authors’ proposals in order to define and measure structural robustness are analyzed and discussed. The probabilistic based robustness index is defined, considering the reliability index decreasing for all possible damage levels. Damage is considered as the corrosion level of the longitudinal reinforcement in terms of rebar weight loss. Damage produces changes in both cross sectional area of rebar and bond strength. The proposed methodology is illustrated by means of an application example. In order to consider the impact of reinforcement corrosion on failure probability growth, an advanced methodology based on the strong discontinuities approach and an isotropic continuum damage model for concrete is adopted. The methodology consist on a two-step analysis: on the first step an analysis of the cross section is performed in order to capture phenomena such as expansion of the reinforcement due to the corrosion products accumulation and damage and cracking in the reinforcement surrounding concrete; on the second step a 2D deteriorated structural model is built with the results obtained on the first step of the analysis. The referred methodology combined with a Monte Carlo simulation is then used to compute the failure probability and the reliability index of the structure for different corrosion levels. Finally, structural robustness is assessed using the proposed probabilistic index.
Resumo:
This article investigates the limit cycle (LC) prediction of systems with backlash by means of the describing function (DF) when using discrete fractional-order (FO) algorithms. The DF is an approximate method that gives good estimates of LCs. The implementation of FO controllers requires the use of rational approximations, but such realizations produce distinct dynamic types of behavior. This study analyzes the accuracy in the prediction of LCs, namely their amplitude and frequency, when using several different algorithms. To illustrate this problem we use FO-PID algorithms in the control of systems with backlash.
Resumo:
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on short- time stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced.
Resumo:
Background: Little is known about the risk of progression to hazardous alcohol use in people currently drinking at safe limits. We aimed to develop a prediction model (predictAL) for the development of hazardous drinking in safe drinkers. Methods: A prospective cohort study of adult general practice attendees in six European countries and Chile followed up over 6 months. We recruited 10,045 attendees between April 2003 to February 2005. 6193 European and 2462 Chilean attendees recorded AUDIT scores below 8 in men and 5 in women at recruitment and were used in modelling risk. 38 risk factors were measured to construct a risk model for the development of hazardous drinking using stepwise logistic regression. The model was corrected for over fitting and tested in an external population. The main outcome was hazardous drinking defined by an AUDIT score >= 8 in men and >= 5 in women. Results: 69.0% of attendees were recruited, of whom 89.5% participated again after six months. The risk factors in the final predictAL model were sex, age, country, baseline AUDIT score, panic syndrome and lifetime alcohol problem. The predictAL model's average c-index across all six European countries was 0.839 (95% CI 0.805, 0.873). The Hedge's g effect size for the difference in log odds of predicted probability between safe drinkers in Europe who subsequently developed hazardous alcohol use and those who did not was 1.38 (95% CI 1.25, 1.51). External validation of the algorithm in Chilean safe drinkers resulted in a c-index of 0.781 (95% CI 0.717, 0.846) and Hedge's g of 0.68 (95% CI 0.57, 0.78). Conclusions: The predictAL risk model for development of hazardous consumption in safe drinkers compares favourably with risk algorithms for disorders in other medical settings and can be a useful first step in prevention of alcohol misuse.
Resumo:
Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.
Resumo:
A presente dissertação apresenta o estudo de previsão do diagrama de carga de subestações da Rede Elétrica Nacional (REN) utilizando redes neuronais, com o intuito de verificar a viabilidade do método utilizado, em estudos futuros. Atualmente, a energia elétrica é um bem essencial e desempenha um papel fundamental, tanto a nível económico do país, como a nível de conforto e satisfação individual. Com o desenvolvimento do setor elétrico e o aumento dos produtores torna-se importante a realização da previsão de diagramas de carga, contribuindo para a eficiência das empresas. Esta dissertação tem como objetivo a utilização do modelo das redes neuronais artificiais (RNA) para criar uma rede capaz de realizar a previsão de diagramas de carga, com a finalidade de oferecer a possibilidade de redução de custos e gastos, e a melhoria de qualidade e fiabilidade. Ao longo do trabalho são utilizados dados da carga (em MW), obtidos da REN, da subestação da Prelada e dados como a temperatura, humidade, vento e luminosidade, entre outros. Os dados foram devidamente tratados com a ajuda do software Excel. Com o software MATLAB são realizados treinos com redes neuronais, através da ferramenta Neural Network Fitting Tool, com o objetivo de obter uma rede que forneça os melhores resultados e posteriormente utiliza-la na previsão de novos dados. No processo de previsão, utilizando dados reais das subestações da Prelada e Ermesinde referentes a Março de 2015, comprova-se que com a utilização de RNA é possível obter dados de previsão credíveis, apesar de não ser uma previsão exata. Deste modo, no que diz respeito à previsão de diagramas de carga, as RNA são um bom método a utilizar, uma vez que fornecem, à parte interessada, uma boa previsão do consumo e comportamento das cargas elétricas. Com a finalização deste estudo os resultados obtidos são no mínimo satisfatórios. Consegue-se alcançar através das RNA resultados próximos aos valores que eram esperados, embora não exatamente iguais devido à existência de uma margem de erro na aprendizagem da rede neuronal.
Resumo:
The integrity of multi-component structures is usually determined by their unions. Adhesive-bonding is often used over traditional methods because of the reduction of stress concentrations, reduced weight penalty, and easy manufacturing. Commercial adhesives range from strong and brittle (e.g., Araldite® AV138) to less strong and ductile (e.g., Araldite® 2015). A new family of polyurethane adhesives combines high strength and ductility (e.g., Sikaforce® 7888). In this work, the performance of the three above-mentioned adhesives was tested in single lap joints with varying values of overlap length (LO). The experimental work carried out is accompanied by a detailed numerical analysis by finite elements, either based on cohesive zone models (CZM) or the extended finite element method (XFEM). This procedure enabled detailing the performance of these predictive techniques applied to bonded joints. Moreover, it was possible to evaluate which family of adhesives is more suited for each joint geometry. CZM revealed to be highly accurate, except for largely ductile adhesives, although this could be circumvented with a different cohesive law. XFEM is not the most suited technique for mixed-mode damage growth, but a rough prediction was achieved.
Resumo:
This study aims to compare two methods of assessing the postural phase of gait initiation as to intrasession reliability, in healthy and post-stroke subjects. As a secondary aim, this study aims to analyse anticipatory postural adjustments during gait initiation based on the centre of pressure (CoP) displacements in post-stroke participants. The CoP signal was acquired during gait initiation in fifteen post-stroke subjects and twenty-three healthy controls. Postural phase was identified through a baseline-based method and a maximal displacement based method. In both healthy and post-stroke participants higher intra-class correlation coefficient and lower coefficient of variation values were obtained with the baseline-based method when compared to the maximal displacement based method. Post-stroke participants presented decreased CoP displacement backward and toward the first swing limb compared to controls when the baseline-based method was used. With the maximal displacement based method, there were differences between groups only regarding backward CoP displacement. Postural phase duration in medial-lateral direction was also increased in post-stroke participants when using the maximal displacement based method. The findings obtained indicate that the baseline-based method is more reliable detecting the onset of gait initiation in both groups, while the maximal displacement based method presents greater sensitivity for post-stroke participants.
Resumo:
Assessing the safety of existing timber structures is of paramount importance for taking reliable decisions on repair actions and their extent. The results obtained through semi-probabilistic methods are unrealistic, as the partial safety factors present in codes are calibrated considering the uncertainty present in new structures. In order to overcome these limitations, and also to include the effects of decay in the safety analysis, probabilistic methods, based on Monte-Carlo simulation are applied here to assess the safety of existing timber structures. In particular, the impact of decay on structural safety is analyzed and discussed, using a simple structural model, similar to that used for current semi-probabilistic analysis.
Resumo:
OBJECTIVE: To empirically test, based on a large multicenter, multinational database, whether a modified PIRO (predisposition, insult, response, and organ dysfunction) concept could be applied to predict mortality in patients with infection and sepsis. DESIGN: Substudy of a multicenter multinational cohort study (SAPS 3). PATIENTS: A total of 2,628 patients with signs of infection or sepsis who stayed in the ICU for >48 h. Three boxes of variables were defined, according to the PIRO concept. Box 1 (Predisposition) contained information about the patient's condition before ICU admission. Box 2 (Injury) contained information about the infection at ICU admission. Box 3 (Response) was defined as the response to the infection, expressed as a Sequential Organ Failure Assessment score after 48 h. INTERVENTIONS: None. MAIN MEASUREMENTS AND RESULTS: Most of the infections were community acquired (59.6%); 32.5% were hospital acquired. The median age of the patients was 65 (50-75) years, and 41.1% were female. About 22% (n=576) of the patients presented with infection only, 36.3% (n=953) with signs of sepsis, 23.6% (n=619) with severe sepsis, and 18.3% (n=480) with septic shock. Hospital mortality was 40.6% overall, greater in those with septic shock (52.5%) than in those with infection (34.7%). Several factors related to predisposition, infection and response were associated with hospital mortality. CONCLUSION: The proposed three-level system, by using objectively defined criteria for risk of mortality in sepsis, could be used by physicians to stratify patients at ICU admission or shortly thereafter, contributing to a better selection of management according to the risk of death.