269 resultados para Recharge
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer's surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.^
Resumo:
Hydrogeologic variables controlling groundwater exchange with inflow and flow-through lakes were simulated using a three-dimensional numerical model (MODFLOW) to investigate and quantify spatial patterns of lake bed seepage and hydraulic head distributions in the porous medium surrounding the lakes. Also, the total annual inflow and outflow were calculated as a percentage of lake volume for flow-through lake simulations. The general exponential decline of seepage rates with distance offshore was best demonstrated at lower anisotropy ratio (i.e., Kh/Kv = 1, 10), with increasing deviation from the exponential pattern as anisotropy was increased to 100 and 1000. 2-D vertical section models constructed for comparison with 3-D models showed that groundwater heads and seepages were higher in 3-D simulations. Addition of low conductivity lake sediments decreased seepage rates nearshore and increased seepage rates offshore in inflow lakes, and increased the area of groundwater inseepage on the beds of flow-through lakes. Introduction of heterogeneity into the medium decreased the water table and seepage ratesnearshore, and increased seepage rates offshore in inflow lakes. A laterally restricted aquifer located at the downgradient side of the flow-through lake increased the area of outseepage. Recharge rate, lake depth and lake bed slope had relatively little effect on the spatial patterns of seepage rates and groundwater exchange with lakes.
Resumo:
Increasing dependence on groundwater in the Wakal River basin, India, jeopardizes water supply sustainability. A numerical groundwater model was developed to better understand the aquifer system and to evaluate its potential in terms of quantity and replenishment. Potential artificial recharge areas were delineated using landscape and hydrogeologic parameters, Geographic Information System (GIS), and remote sensing. Groundwater models are powerful tools for recharge estimation when transmissivity is known. Proper recharge must be applied to reproduce field-measured heads. The model showed that groundwater levels could decline significantly if there are two drought years in every four years that result in reduced recharge, and groundwater withdrawal is increased by 15%. The effect of such drought is currently uncertain however, because runoff from the basin is unknown. Remote sensing and GIS revealed areas with slopes less than 5%, forest cover, and Normalized Difference Vegetative Index greater than 0.5 that are suitable recharge sites.
Resumo:
Some of the most valued natural and cultural landscapes on Earth lie in river basins that are poorly gauged and have incomplete historical climate and runoff records. The Mara River Basin of East Africa is such a basin. It hosts the internationally renowned Mara-Serengeti landscape as well as a rich mixture of indigenous cultures. The Mara River is the sole source of surface water to the landscape during the dry season and periods of drought. During recent years, the flow of the Mara River has become increasingly erratic, especially in the upper reaches, and resource managers are hampered by a lack of understanding of the relative influence of different sources of flow alteration. Uncertainties about the impacts of future climate change compound the challenges. We applied the Soil Water Assessment Tool (SWAT) to investigate the response of the headwater hydrology of the Mara River to scenarios of continued land use change and projected climate change. Under the data-scarce conditions of the basin, model performance was improved using satellite-based estimated rainfall data, which may also improve the usefulness of runoff models in other parts of East Africa. The results of the analysis indicate that any further conversion of forests to agriculture and grassland in the basin headwaters is likely to reduce dry season flows and increase peak flows, leading to greater water scarcity at critical times of the year and exacerbating erosion on hillslopes. Most climate change projections for the region call for modest and seasonally variable increases in precipitation (5–10 %) accompanied by increases in temperature (2.5–3.5 °C). Simulated runoff responses to climate change scenarios were non-linear and suggest the basin is highly vulnerable under low (−3 %) and high (+25 %) extremes of projected precipitation changes, but under median projections (+7 %) there is little impact on annual water yields or mean discharge. Modest increases in precipitation are partitioned largely to increased evapotranspiration. Overall, model results support the existing efforts of Mara water resource managers to protect headwater forests and indicate that additional emphasis should be placed on improving land management practices that enhance infiltration and aquifer recharge as part of a wider program of climate change adaptation.
Resumo:
In this work the landscape morphodynamics was used to check the strength and importance of the changes carried out by man on the environment over time, in Natal-RN municipality. The occupation of partially preserved natural areas was analyzed, but environmentally fragile, such as riparian forests, vegetation on the banks of waterways, which play regulatory role of the water flow, and the dunes, which guarantee the rapid recharge of aquifers. The impacts of urban sprawl in Natal Southern and West zones Were identified and characterized, through a detailed mapping in the period between 1969 and 2013 the main Permanent Preservation Areas - PPA (banks of rivers and lagoons, and dunes remaining) and their temporal changes. For this were used aerial photographs and satellite imagery, altimetry data, and pre-existing information, which allowed the creation of a spatial database, and evolution of maps of impervious areas, evolution of the use and occupation and Digital Terrain Model (DTM) from contour lines with contour interval of 1 meter. Based on this study presents a diagnosis of the environmental situation and the state of conservation of natural areas, over the last 44 years, compared to human pressures. In general, it was found that the urban settlement has advanced about 60% of studied natural areas. This advance was growing by the year 2006, when there was a slowdown in the process, except for the Environmental Protection Zone (EPZ) 03, where the river Pitimbú and your PPA, which experienced a more significant loss area. The urban occupation affected the natural drainage and contributed to the contamination of groundwater Natal, due to increased sealed area, the release of liquid and solid waste, as well as the removal of riparian vegetation. Changed irreversibly the natural landscape, and reduced the quality and quantity of water resources necessary for the population. Thus, it is necessary to stimulate the adoption of use and protection of PPA planning measures, to the preservation of the San Valley Region inserted into the EPZ 01, and integrate more remaining dunes, in good condition, this EPZ, due to the importance of those remaining on the environment and the maintenance of quality of life. It is suggested, also, protection of catchment areas, such as PPA ponds and Pitimbú River. Finally, it is expected that this study can assist the managers in making decisions in urban and environmental planning of the municipality
Resumo:
A type of macro drainage solution widely used in urban areas with predomi-nance of closed catchments (basins without outlet) is the implementation of detention and infiltration reservoirs (DIR). This type of solution has the main function of storing surface runoff and to promote soil infiltration and, consequently, aquifer recharge. The practice is to avoid floods in the drainage basin low-lying areas. The catchment waterproofing reduces the distributed groundwater recharge in urban areas, as is the case of Natal city, RN. However, the advantage of DIR is to concentrate the runoff and to promote aquifer recharge to an amount that can surpass the distributed natu-ral recharge. In this paper, we proposed studying a small urban drainage catchment, named Experimental Mirassol Watershed (EMW) in Natal, RN, whose outlet is a DIR. The rainfall-runoff transformation processes, water accumulation in DIR and the pro-cess of infiltration and percolation in the soil profile until the free aquifer were mod-eled and, from rainfall event observations, water levels in DIR and free aquifer water level measurements, and also, parameter values determination, it is was enabled to calibrate and modeling these combined processes. The mathematical modeling was carried out from two numerical models. We used the rainfall-runoff model developed by RIGHETTO (2014), and besides, we developed a one-dimensional model to simu-late the soil infiltration, percolation, redistribution soil water and groundwater in a combined system to the reservoir water balance. Continuous simulation was run over a period of eighteen months in time intervals of one minute. The drainage basin was discretized in blocks units as well as street reaches and the soil profile in vertical cells of 2 cm deep to a total depth of 30 m. The generated hydrographs were transformed into inlet volumes to the DIR and then, it was carried out water balance in these time intervals, considering infiltration and percolation of water in the soil profile. As a re-sult, we get to evaluate the storage water process in DIR as well as the infiltration of water, redistribution into the soil and the groundwater aquifer recharge, in continuous temporal simulation. We found that the DIR has good performance to storage excess water drainage and to contribute to the local aquifer recharge process (Aquifer Dunas / Barreiras).
Resumo:
The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.
Resumo:
The study area is within the Pirangi River Basin, eastern sector of Rio Grande do Norte state, where is located of the Parnamirim city. It has an area of approximately 370 km². Urbanization has developed much fast without an appropriate infrastructure, mainly by the lack of sewage systems, with risks of contamination of groundwater that may cause serious damage to the health of the population. The Barreiras Aquifer System groundwater in the area represents the main source of water supply for urban and rural populations. The use of groundwater occurs without adequate planning and therefore, important recharge areas are being occupied. This study was conducted to quantify the use and evaluation of the potential of groundwater, in order to increase good water quality supply and lower risks of being affected by polluting activities. With these objectives, the following activities were carried out: 268 points of water have been registered; characterization of the lithological, thickness and hydrogeological structure of the Barreiras aquifer, based on the correlation of well logs; and evaluation of hydrodynamic parameters of the aquifer, from the interpretation of results well pumping tests. It was found that the saturated thickness increases from west to east towards the sea, with values ranging from 15,47-56,5 m with an average of 32,45 m. The hydrodynamic parameters using Cooper-Jacob method were: average transmissivity of 5,9x10-3 m²/s and average hydraulic conductivity 2,82x10-4 m/s. The effective porosity is of 15%, obtained by applying Biecinski equation. The potentiometric map shows the main direction of groundwater flow, from west to east, and identifies the recharge areas corresponding to the region of the tablelands of the "Barreiras". The river valleys refer to the discharge areas of the aquifer system. The Recharge was estimated at 253 mm/year, which corresponds to the 16.4% rate of infiltration.
Resumo:
This dissertation consists of three essays on different aspects of water management. The first essay focuses on the sustainability of freshwater use by introducing the notion that altruistic parents do bequeath economic assets for their offspring. Constructing a two-period, over-lapping generational model, an optimal ratio of consumption and pollution for old and young generations in each period is determined. Optimal levels of water consumption and pollution change according to different parameters, such as, altruistic degree, natural recharge rate, and population growth. The second essay concerns water sharing between countries in the case of trans-boundary river basins. The paper recognizes that side payments fail to forge water-sharing agreement among the international community and that downstream countries have weak bargaining power. An interconnected game approach is developed by linking the water allocation issue with other non-water issues such as trade or border security problems, creating symmetry between countries in bargaining power. An interconnected game forces two countries to at least partially cooperate under some circumstances. The third essay introduces the concept of virtual water (VW) into a traditional international trade model in order to estimate water savings for a water scarce country. A two country, two products and two factors trade model is developed, which includes not only consumers and producer’s surplus, but also environmental externality of water use. The model shows that VW trade saves water and increases global and local welfare. This study should help policy makers to design appropriate subsidy or tax policy to promote water savings especially in water scarce countries.
Resumo:
The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (dP) with values of -8.6(±0.2) per mil for d18O and -58(±2) per mil for d2H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of -0.17(±0.02) per mil per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.
Resumo:
The hydrochemistry and the microbial diversity of a pristine aquifer system near Garzweiler, Germany next to the open-pit lignite mine Garzweiler 1, were characterized. Hydrogeochemical and isotopic data indicate a recent activity of sulfate-reducing bacteria in the Tertiary marine sands. The community structure in the aquifer was studied by fluorescence in situ hybridization (FISH). Up to 7.3 x 10**5 cells/ml were detected by DAPIstaining. Bacteria (identified by the probe EUB338) were dominant, representing 51.9% of the total cell number (DAPI). Another 25.7% of total cell were affiliated with the domain Archaea as identified by the probe ARCH915. Within the domain Bacteria, the beta-Proteobacteria were most abundant (21.0% of total cell counts). Using genusspecific probes for sulfate-reducing bacteria (SRB), 2.5% of the total cells were identified as members of the genus Desulfotomaculum. This reflects the predominant role these microorganisms have been found to play in sulfatereducing zones of aquifers at other sites. Previously, all SRB cultured from this site were from the spore-forming genera Desulfotomaculum and Desulfosporosinus. Samples were taken after pumping for >= 40 min and after parameters such as temperature, pH, redox potential, oxygen and conductivity of the groundwater had remained stable for >= 15 min due to recharge of aquifer water. Hybridization and microscopy counts of hybridized and 4',6'-diamidino-2-phenylindole (DAPI)- stained cells were performed as described in Snaidr et al., (1997, http://aem.asm.org/content/63/7/2884.full.pdf). Means were calculated from 10 to 20 randomly chosen fields on each filter section, corresponding to 800-1000 DAPI stained cells. Counting results were always corrected by subtracting signals observed with the probe NON338. Formamide concentrations and oligonucleotide probes used please see further details.
Resumo:
DSDP Hole 504B is the only hole in oceanic crust to penetrate through the volcanic section and into hydrothermally altered sheeted dikes. We have carried out petrologic and sulfur isotopic analyses of sulfide and sulfate minerals and whole rocks from the core in order to place constraints on the geochemistry of sulfur during hydrothermal alteration of ocean crust. The nearly 600 m-thick pillow section has lost sulfur to seawater and has net d34S = -1.8 per mil due to degassing of SO2 during crystallization and subsequent low temperature interaction with seawater. Hydrothermally altered rocks in the 200 m-thick transition zone are enriched in S and 34S (4300 ppm and +3.0 +/-1.2 per mil, respectively), whereas the more than 500 m of sheeted dikes contain 720 ppm S with d34S = +0.6 +/-1.4 per mil. These data are consistent with the presence of predominantly basaltic sulfur in hydrothermal fluids deep in the crust: following precipitation of anhydrite during seawater recharge, small amounts of seawater sulfate were reduced at temperatures >250°C through conversion of igneous pyrrhotite to secondary pyrite and minor oxidation of ferrous iron in the crust. The S- and 34S-enrichments of the transition zone are the results of seawater sulfate reduction and sulfide deposition during subsurface mixing between upwelling hot (up to 350°C) hydrothermal fluids and seawater. Seawater sulfate was probably reduced through oxidation of ferrous iron in hydrothermal fluids and in the transition zone rocks. Alteration of the upper crust resulted in loss of basaltic sulfur to seawater, fixation of minor seawater sulfur in the crust and redistribution of magmatic sulfur within the crust. This caused net increases in sulfur content and d34S of the upper 1.8 km of the oceanic crust.
Resumo:
Flow, recharge and transport dynamics in fractured rock aquifers with low lying rock outcrops is a largely unexplored area of study in hydrogeology. The purpose of this thesis is to examine these topics in an agricultural area in Eastern Ontario. The study consists of a regional scale groundwater quality study, an infiltration experiment that considers bacteria transport from the ground surface to a well, and a numerical modelling study that tests the parameters that affect surface infiltration of a tracer from a rock outcrop to a deeper horizontal fracture. In the water quality study, approximately 65% of the samples contained total coliform, 16% contained E. coli, and 1% contained nitrate-N at greater than 5 mg/L. Occurrence of E. coli increased when considering seasonality, where wells were drilled on rock outcrops, and for shallow well intervals. Nitrate-N did not occur above the Guidelines for Canadian Drinking Water Quality (Health Canada, 2012) of 10 mg/L. Rapid arrival times were observed in the infiltration study for both the microspheres (30 minutes) and a dye tracer (45 minutes) in a well approximately 6.0 m in horizontal and 2.8 m in vertical distance from the tracer source. Transport velocities were approximately 38.9 m/day for the dye tracer and 115.2 m/day for the colloidal tracer. Results of the model runs indicate that overburden can provide an effective protective layer to transport in fractures, that high groundwater velocities occur in larger fracture apertures and higher gradients dilute tracer concentrations, and that lower groundwater velocities occur with smaller fracture apertures and lower gradients result in elevated tracer concentrations. Lower rainfall rates, larger fracture apertures, early tracer time, larger gradients, and lower water levels maintained unsaturated conditions for longer time periods such that tracer transport was delayed until saturated conditions were attained. The overall heterogeneity of this aquifer environment creates a source water protection conundrum where the water quality is generally good, while transport can occur very quickly in proximity to rock outcrops and in areas with limited overburden.
Resumo:
Three-dimensional ordered mesoporous (3DOM) CuCo2O4 materials have been synthesized via a hard template and used as bifunctional electrocatalysts for rechargeable Li-O2 batteries. The characterization of the catalyst by X-ray diffractometry and transmission electron microscopy confirms the formation of a single-phase, 3-dimensional, ordered mesoporous CuCo2O4 structure. The as-prepared CuCo2O4 nanoparticles possess a high specific surface area of 97.1 m2 g- 1 and a spinel crystalline structure. Cyclic voltammetry demonstrates that mesoporous CuCo2O4 catalyst enhances the kinetics for either oxygen reduction reaction (ORR) or oxygen evolution reaction (OER). The Li-O2 battery utilizing 3DOM CuCo2O4 shows a higher specific capacity of 7456 mAh g- 1 than that with pure Ketjen black (KB). Moreover, the CuCo2O4-based electrode enables much enhanced cyclability with a 610 mV smaller discharge-recharge voltage gap than that of the carbon-only cathode at a current rate of 100 mA g- 1. Such excellent catalytic performance of CuCo2O4 could be associated with its larger surface area and 3D ordered mesoporous structure. The excellent electrochemical performances coupled with its facile and cost-effective way will render the 3D mesoporous CuCo2O4 nanostructures as attractive electrode materials for promising application in Li-O2 batteries.
Resumo:
Les écosystèmes dunaires remplissent plusieurs fonctions écologiques essentielles comme celle de protéger le littoral grâce à leur capacité d’amortissement face aux vents et vagues des tempêtes. Les dunes jouent aussi un rôle dans la filtration de l’eau, la recharge de la nappe phréatique, le maintien de la biodiversité, en plus de présenter un attrait culturel, récréatif et touristique. Les milieux dunaires sont très dynamiques et incluent plusieurs stades de succession végétale, passant de la plage de sable nu à la dune bordière stabilisée par l’ammophile à ligule courte, laquelle permet aussi l’établissement d’autres herbacées, d’arbustes et, éventuellement, d’arbres. Or, la survie de ces végétaux est intimement liée aux microorganismes du sol. Les champignons du sol interagissent intimement avec les racines des plantes, modifient la structure des sols, et contribuent à la décomposition de la matière organique et à la disponibilité des nutriments. Ils sont donc des acteurs clés de l’écologie des sols et contribuent à la stabilisation des dunes. Malgré cela, la diversité et la structure des communautés fongiques, ainsi que les mécanismes influençant leur dynamique écologique, demeurent relativement méconnus. Le travail présenté dans cette thèse explore la diversité des communautés fongiques à travers le gradient de succession et de conditions édaphiques d’un écosystème dunaire côtier afin d’améliorer la compréhension de la dynamique des sols en milieux dunaires. Une vaste collecte de données sur le terrain a été réalisée sur une plaine de dunes reliques se trouvant aux Îles de la Madeleine, Qc. J’ai échantillonné plus de 80 sites répartis sur l’ensemble de ce système dunaire et caractérisé les champignons du sol grâce au séquençage à haut débit. Dans un premier temps, j’ai dressé un portait d’ensemble des communautés fongiques du sol à travers les différentes zones des dunes. En plus d’une description taxonomique, les modes de vie fongiques ont été prédits afin de mieux comprendre comment les variations au niveau des communautés de champignons du sol peuvent se traduire en changements fonctionnels. J’ai observé un niveau de diversité fongique élevé (plus de 3400 unités taxonomiques opérationnelles au total) et des communautés taxonomiquement et fonctionnellement distinctes à travers un gradient de succession et de conditions édaphiques. Ces résultats ont aussi indiqué que toutes les zones des dunes, incluant la zone pionière, supportent des communautés fongiques diversifiées. Ensuite, le lien entre les communautés végétales et fongiques a été étudié à travers l’ensemble de la séquence dunaire. Ces résultats ont montré une augmentation claire de la richesse spécifique végétale, ainsi qu’une augmentation de la diversité des stratégies d’acquisition de nutriments (traits souterrains lié à la nutrition des plantes, soit mycorhizien à arbuscule, ectomycorhizien, mycorhizien éricoide, fixateur d’azote ou non spécialisé). J’ai aussi pu établir une forte corrélation entre les champignons du sol et la végétation, qui semblent tous deux réagir de façon similaire aux conditions physicochimiques du sol. Le pH du sol influençait fortement les communautés végétales et fongiques. Le lien observé entre les communautés végétales et fongiques met l’emphase sur l’importance des interactions biotiques positives au fil de la succession dans les environnements pauvres en nutriments. Finalement, j’ai comparé les communautés de champignons ectomycorhiziens associées aux principales espèces arborescentes dans les forêts dunaires. J’ai observé une richesse importante, avec un total de 200 unités taxonomiques opérationnelles ectomycorhiziennes, appartenant principalement aux Agaricomycètes. Une analyse de réseaux n’a pas permis de détecter de modules (c'est-à-dire des sous-groupes d’espèces en interaction), ce qui indique un faible niveau de spécificité des associations ectomycorhiziennes. De plus, je n’ai pas observé de différences en termes de richesse ou de structure des communautés entre les quatre espèces hôtes. En conclusion, j’ai pu observer à travers la succession dunaire des communautés diversifiées et des structures distinctes selon la zone de la dune, tant chez les champignons que chez les plantes. La succession semble toutefois moins marquée au niveau des communautés fongiques, par rapport aux patrons observés chez les plantes. Ces résultats ont alimenté une réflexion sur le potentiel et les perspectives, mais aussi sur les limitations des approches reposant sur le séquençage à haut-débit en écologie microbienne.