966 resultados para Rare species
Resumo:
La variabilità genetica è un importante strumento per lo studio e la conservazione della biodiversità in specie rare e minacciate di estinzione. Durante il mio dottorato mi sono quindi occupata di mettere a punto diverse metodologie molecolari al fine di valutare la diversità genetica in due specie rare della flora italiana che presentano problematiche diverse e specifiche. I marcatori arbitrari RAPD e i marcatori semi-arbitrari ISSR sono stati utilizzati per valutare la diversità genetica in Quercus crenata Lam. e per confermare l’ipotesi della sua origine ibridogena dalle due specie presunte parentali Quercus cerris L. e Quercus suber L., essendo Q. crenata presente in Italia settentrionale dove Q. suber è attualmente assente. I marcatori SSR o microsatelliti sono invece stati messi a punto su una specie a rischio di estinzione, endemica dell’Appennino Tosco-Emiliano, Primula apennina Widmer, applicando una metodologia specifica, basata sulla costruzione di una libreria genomica arricchita per l’isolamento di primer specifici. I marcatori RAPD e ISSR, utilizzati su un totale di 85 campioni, hanno mostrato alti livelli di diversità molecolare entro le specie studiate, eccetto per Q. suber le cui popolazioni rappresentano il margine orientale di distribuzione della specie, per questo più sottoposte ad impoverimento genetico. Oltre alla cluster analysis (UPGMA) e alla Analisi delle Componenti Principali effettuate per entrambi i marcatori, che confermano l’ipotesi dell’origine ibrida degli individui di Q. crenata diffusi in Italia Settentrionale, sono stati calcolati l’indice di ibridità basato sul maximum likelihood, che dimostra una introgressione asimmetrica di Q. crenata verso il parentale caratterizzato da superiorità demografica (Q. cerris) e il test di Mantel. Quest’ultimo ha permesso di confrontare i due marcatori RAPD e ISSR utilizzati ottenendo una bassa correlazione, a conferma del fatto che, amplificando tratti differenti del DNA nucleare, i dati non sono sovrapponibili, sebbene forniscano risultati analoghi. Per l’isolamento di loci microsatelliti ipervariabili ho utilizzato il protocolllo FIASCO (Fast isolation by AFLP of sequences containing repeats- Zane et al. 2002) che permette di costruire una libreria genomica arricchita partendo dal DNA estratto da P. apennina. Tale procedura ha previsto la digestione del DNA genomico per la produzione di una miscela di frammenti di DNA. Tramite ibridazione con opportune sonde sono stati isolati i frammenti contenenti i microsatelliti. Sequenziando i cloni ricombinanti, ho ottenuto sequenze contenenti repeats sulle cui regioni fiancheggianti sono stati costruiti 15 coppie di primer che potranno, in seguito, essere utilizzate per definire la quota di riproduzione clonale in P. apennina e per valutare la diversità genetica delle popolazioni che coprono l’areale di distribuzione della specie. Data la loro natura altamente variabile e la loro abbondanza nel DNA, gli SSR saranno, come i marcatori RAPD e gli ISSR, ugualmente validi per lo studio della variabilità genetica e per l’analisi di problematiche specifiche legate alle specie rare.
Resumo:
A new genus is proposed for the strikingly patterned African vespertilionid "Glauconycteris" superba Hayman, 1939 on the basis of cranial and external morphological comparisons. A review of the attributes of a newly collected specimen from South Sudan (a new country record) and other museum specimens of "G." superba suggests that "G." superba is markedly distinct ecomorphologically from other species classified in Glauconycteris and is likely the sister taxon to Glauconycteris sensu stricto. The recent capture of this rarely collected but widespread bat highlights the need for continued research in tropical sub-Saharan Africa and in particular, for more work in western South Sudan, which has received very little scientific attention. New country records for G. cf. poensis (South Sudan) and G. curryae (Gabon) are also reported.
Resumo:
Principles and guidelines are presented to ensure a solid scientific standard of papers dealing with the taxonomy of taxa of Pasteurellaceae Pohl 1981. The classification of the Pasteurellaceae is in principle based on a polyphasic approach. DNA sequencing of certain genes is very important for defining the borders of a taxon. However, the characteristics that are common to all members of the taxon and which might be helpful for separating it from related taxa must also be identified. Descriptions have to be based on as many strains as possible (inclusion of at least five strains is highly desirable), representing different sources with respect to geography and ecology, to allow proper characterization both phenotypically and genotypically, to establish the extent of diversity of the cluster to be named. A genus must be monophyletic based on 16S rRNA gene sequence-based phylogenetic analysis. Only in very rare cases is it acceptable that monophyly can not be achieved by 16S rRNA gene sequence comparison. Recently, the monophyly of genera has been confirmed by sequence comparison of housekeeping genes. In principle, a new genus should be recognized by a distinct phenotype, and characters that separate the new genus from its neighbours should be given clearly. Due to the overall importance of accurate classification of species, at least two genotypic methods are needed to show coherence and for separation at the species level. The main criterion for the classification of a novel species is that it forms a monophyletic group based on 16S rRNA gene sequence-based phylogenetic analysis. However, some groups might also include closely related species. In these cases, more sensitive tools for genetic recognition of species should be applied, such as DNA-DNA hybridizations. The comparison of housekeeping gene sequences has recently been used for genotypic definition of species. In order to separate species, phenotypic characters must also be identified to recognize them, and at least two phenotypic differences from existing species should be identified if possible. We recommend the use of the subspecies category only for subgroups associated with disease or similar biological characteristics. At the subspecies level, the genotypic groups must always be nested within the boundaries of an existing species. Phenotypic cohesion must be documented at the subspecies level and separation between subspecies and related species must be fully documented, as well as association with particular disease and host. An overview of methods previously used to characterize isolates of the Pasteurellaceae has been given. Genotypic and phenotypic methods are separated in relation to tests for investigating diversity and cohesion and to separate taxa at the level of genus as well as species and subspecies.
Resumo:
We analyzed the species distribution of Candida blood isolates (CBIs), prospectively collected between 2004 and 2009 within FUNGINOS, and compared their antifungal susceptibility according to clinical breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in 2013, and the Clinical and Laboratory Standards Institute (CLSI) in 2008 (old CLSI breakpoints) and 2012 (new CLSI breakpoints). CBIs were tested for susceptiblity to fluconazole, voriconazole and caspofungin by microtitre broth dilution (Sensititre® YeastOne™ test panel). Of 1090 CBIs, 675 (61.9%) were C. albicans, 191 (17.5%) C. glabrata, 64 (5.9%) C. tropicalis, 59 (5.4%) C. parapsilosis, 33 (3%) C. dubliniensis, 22 (2%) C. krusei and 46 (4.2%) rare Candida species. Independently of the breakpoints applied, C. albicans was almost uniformly (>98%) susceptible to all three antifungal agents. In contrast, the proportions of fluconazole- and voriconazole-susceptible C. tropicalis and F-susceptible C. parapsilosis were lower according to EUCAST/new CLSI breakpoints than to the old CLSI breakpoints. For caspofungin, non-susceptibility occurred mainly in C. krusei (63.3%) and C. glabrata (9.4%). Nine isolates (five C. tropicalis, three C. albicans and one C. parapsilosis) were cross-resistant to azoles according to EUCAST breakpoints, compared with three isolates (two C. albicans and one C. tropicalis) according to new and two (2 C. albicans) according to old CLSI breakpoints. Four species (C. albicans, C. glabrata, C. tropicalis and C. parapsilosis) represented >90% of all CBIs. In vitro resistance to fluconazole, voriconazole and caspofungin was rare among C. albicans, but an increase of non-susceptibile isolates was observed among C. tropicalis/C. parapsilosis for the azoles and C. glabrata/C. krusei for caspofungin according to EUCAST and new CLSI breakpoints compared with old CLSI breakpoints.
Resumo:
A major objective in ecology is to find general patterns, and to establish the rules and underlying mechanisms that generate those patterns. Nevertheless, most of our current insights in ecology are based on case studies of a single or few species, whereas multi-species experimental studies remain rare. We underline the power of the multi-species experimental approach for addressing general ecological questions, e. g. on species environmental responses or on patterns of among-and within-species variation. We present simulations that show that the accuracy of estimates of between-group differences is increased by maximizing the number of species rather than the number of populations or individuals per species. Thus, the more species a multi-species experiment includes, the more powerful it is. In addition, we discuss some inevitable methodological challenges of multi-species experiments. While we acknowledge the value of single-or few-species experiments, we strongly advocate the use of multi-species experiments for addressing ecological questions at a more general level.
Resumo:
Literature on bird spider or tarantula bites (Theraphosidae) is rare. This is astonishing as they are coveted pets and interaction with their keepers (feeding, cleaning the terrarium or taking them out to hold) might increase the possibility for bites. Yet, this seems to be a rare event and might be why most theraphosids are considered to be harmless, even though the urticating hairs of many American species can cause disagreeable allergic reactions. We are describing a case of a verified bite by an Indian ornamental tree spider (Poecilotheria regalis), where the patient developed severe, long lasting muscle cramps several hours after the bite. We present a comprehensive review of the literature on bites of these beautiful spiders and conclude that a delayed onset of severe muscle cramps, lasting for days, is characteristic for Poecilotheria bites. We discuss Poecilotheria species as an exception from the general assumption that theraphosid bites are harmless to humans.
Resumo:
The ability of some invasive plant species to produce biochemical compounds toxic to native species, called allelopathy, is thought to be one of the reasons for their success when introduced to a novel range, an idea known as the Novel Weapons Hypothesis. However, support for this hypothesis mainly comes from bioassays and experiments conducted under controlled environments, whereas field evidence is rare. In a field experiment, we investigated whether three plant species invasive in Europe, Solidago gigantea, Impatiens glandulifera and Erigeron annuus, inhibit the germination of native species through allelopathy more than an adjacent native plant community. At three sites for each invasive species, we compared the germination of native species that were sown on invaded and non-invaded plots. Half of these plots were amended with activated carbon to reduce the influence of potential allelopathic compounds. The germination of sown seeds and of seeds from the seedbank was monitored over a period of 9 weeks. Activated carbon generally enhanced seed germination. This effect was equally pronounced in invaded and adjacent non-invaded plots, indicating that invasive species do not suppress germination more than a native plant community. In addition, more seeds germinated from the seedbank on invaded than on non-invaded soil, probably due to previous suppression of germination by the invasive species. Our field study does not provide evidence for the Novel Weapons Hypothesis with respect to the germination success of natives. Instead, our results suggest that if invasive species release allelopathic compounds that suppress germination, they do so to a similar degree as the native plant community.
Resumo:
Catches of leptocephali of shelf and slope marine eels of the Chlopsidae, Congridae, Moringuidae, Muraenidae, and Ophichthidae collected during a survey in the southwestern Sargasso Sea in late September and early October 1984 were analyzed to learn about their reproductive ecology and larval transport. Sampling along a transect from the Florida Current (FC) out across the southwestern Sargasso Sea and in the Northwest Providence Channel (NWPC) of the Northern Bahamas enabled the evaluation of the larval distributions, abundances and size ranges, regional assemblage structure, and the apparent spawning areas of these marine eels. Distinctly different assemblages observed in the FC and NWPC included the congrid genera Heteroconger, Paraconger, Uroconger, and many ophichthid species, which were rare or absent offshore. Other taxa of congrids, chlopsids, muraenids and moringuids were present in all areas, but the smallest specimens of most taxa were only caught at the NWPC or FC stations. Multivariate analyses reflected higher richness and abundance in the FC and NWPC and also similar species compositions in offshore areas. The patterns of distribution of these leptocephali differed from those of anguillid, nettastomatid, and mesopelagic eel leptocephali collected in the same survey. These findings support the hypothesis that most taxa of marine eels spawn close to their adult habitats, and indicate that despite high biodiversity of marine eels in the Northern Bahamas, only some species of leptocephali appear to get transported far offshore by ocean currents.
Resumo:
Although accumulating evidence indicates that local intraspecific density-dependent effects are not as rare in species-rich communities as previously suspected, there are still very few detailed and systematic neighborhood analyses of species-rich communities. Here, we provide such an analysis with the overall goal of quantifying the relative importance of inter- and intraspecific interaction strength in a primary, lowland dipterocarp forest located at Danum, Sabah, Malaysia. Using data on 10 abundant overstory dipterocarp species from two 4-ha permanent plots, we evaluated the effects of neighbors on the absolute growth rate of focal trees (from 1986 to 1996) over increasing neighborhood radii (from 1 to 20 m) with multiple regressions. Only trees 10 cm to < 100 cm girth at breast height in 1986 were considered as focal trees. Among neighborhood models with one neighbor term, models including only conspecific larger trees performed best in five out of 10 species. Negative effects of conspecific larger neighbors were most apparent in large overstory species such as those of the genus Shorea. However, neighborhood models with separate terms and radii for heterospecific and conspecific neighbors accounted for more variability in absolute growth rates than did neighborhood models with one neighbor term. The conspecific term was significant for nine out of 10 species. Moreover, in five out of 10 species, trees without conspecific neighbors had significantly higher absolute growth rates than trees with conspecific neighbors. Averaged over the 10 species, trees without conspecific neighbors grew 32.4 cm(2) in basal area from 1986 to 1996, whereas trees with conspecific neighbors only grew 14.7 cm(2) in basal area, although there was no difference in initial basal area between trees in the two groups. Averaged across the six species of the genus Shorea, negative effects of conspecific larger trees were significantly stronger than for heterospecific larger neighbors. Thus, high local densities within neighborhoods of 20 m may lead to strong intraspecific negative and, hence, density-dependent, effects even in species rich communities with low overall densities at larger spatial scales. We conjecture that the strength of conspecific effects may be correlated with the degree of host specificity of ectomycorrhizae.
Resumo:
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores.
Resumo:
Aims Reintroduction has become an important tool for the management of endangered plant species. We tested the little-explored effects of small-scale environmental variation, genotypic composition (i.e. identity of genotypes), and genotypic diversity on the population survival of the regionally rare clonal plant Ranunculus reptans. For this species of periodically inundated lakeshores genetic differentiation had been reported between populations and between short-flooded and long-flooded microsites within populations.Methods We established 306 experimental test populations at a previously unoccupied lake shore, comprising either monocultures of 32 genotypes, mixtures of genotypes within populations or mixtures of genotypes between populations. In 2000, three years after planting out at the experimental site, a long-lasting flood caused the death of half of the experimental populations. In 2003, an extreme drought resulted in the lowest summer water levels ever measured.Important findings Despite these climatic extremes, 27 of the established populations survived until the end of the experiment in December 2003. The success of experimental populations largely differed between microsites. Moreover, the success of genotype monocultures depended on genotype and source population. Genetic differentiation between microsites played a minor role for the success of reintroduction. After the flood, populations planted with genotypes from different source populations increased in abundance, whereas populations with genotypes from single source populations and genotype monocultures decreased. We conclude that sources for reintroductions need to be selected carefully. Moreover, mixtures of plants from different populations appear to be the best choice for successful reintroduction, at least in unpredictably varying environments.
Resumo:
Radiolaria were studied in 19 manganese nodules raised from the bottom. The nodules occurred mainly on the surface of thin Quaternary sediments covering Tertiary deposits of various ages (Middle Eocene to Early Miocene). Radiolaria in nodule cores and in inner and surface layers were studied. We found 85 radiolaria species and groups of species. Usually 1-4 to 6-19 radiolaria species were detected in each of the samples. Species belonging to Middle Eocene, Late Miocene to Early Oligocene, and Oligocene to Early Miocene were found. Rare Neogene species were revealed only in fractured surface layers. Age of the nodules is mainly Oligocene. Seismic waves cause sediment vibration, loosening disintegration, and removal of suspension by bottom currents. The vibration effect causes ancient nodules to float up to the surface of Quaternary sediment. This hypothesis suggests the reason for characteristics of the Clarion-Clipperton zone: regional stratigraphic hiatus, accumulation of residual fields of nodules, and the ''floating up'' of nodules to the surface of the Quaternary sediments.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM, ~5 million years ago) was an interval of global warming and ocean acidification attributed to rapid release and oxidation of buried carbon. We show that the onset of the PETM coincided with a prominent increase in the origination and extinction of calcareous phytoplankton. Yet major perturbation of the surface-water saturation state across the PETM was not detrimental to the survival of most calcareous nannoplankton taxa and did not impart a calcification or ecological bias to the pattern of evolutionary turnover. Instead, the rate of environmental change appears to have driven turnover, preferentially affecting rare taxa living close to their viable limits.
Resumo:
We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.
Resumo:
The calcite compensation depth (CCD) fluctuates as a result of changes in the water-mass system, thereby producing a distinct dissolution pattern. Differential dissolution changes the composition of the foraminiferal assemblages, reflecting the depositional environment in respect to the fluctuating CCD. The dissolution pattern for the comparatively shallow Site 541 on the Barbados Ridge indicates a depositional environment mostly above the CCD, but below the foraminiferal lysocline during the late Miocene to early Pleistocene. In contrast, sediments of the deeper-water Site 543 indicate a depositional environment above the CCD during the late Pliocene to early Pleistocene only. Furthermore, similarities in the dissolution pattern of corresponding time intervals of Site 541 (represented by superimposed faulted intervals termed Tectonic Units A and B) are recognizable. Sediments deposited clearly above the foraminiferal lysocline are rare