856 resultados para Random regression models
Resumo:
La polyconsommation d’alcool et de cannabis est rapportée par un grand nombre de jeunes adultes canadiens (Flight, 2007). Les recherches épidémiologiques suggèrent que le statut de polyconsommateur est associé à certains comportements à risque, dont la consommation excessive d’alcool et la conduite d’un véhicule automobile sous l’influence de l’alcool (Jones et al. 2001; Mohler-Kuo, et al. 2003; Shillington & Clapp, 2006). Les études qui soutiennent le risque accru de comportements à risque pour les polyconsommateurs se focalisent sur l’effet des substances. En rupture avec cette approche, ce mémoire présente une étude situationnelle de la polyconsommation en examinant l’effet du statut de polyconsommateur et, pour ceux-ci l’effet de la consommation simultanée d’alcool et de cannabis, en situant l’action dans son contexte de survenu et en examinant la contribution du contexte. La probabilité d’avoir conduit une voiture sous l’influence de l’alcool et d’avoir consommé excessivement de l’alcool sera examinée auprès d’étudiants universitaires. La contribution respective des substances, des situations et de l’expérience de la vie universitaire sera examinée. La méthodologie employée repose sur la construction de modèles de régression logistique multiniveaux, à la fois chez l’ensemble des buveurs (10 747 occasions, nichées dans 4396 buveurs) et dans le sous-échantillon des polyconsommateurs (2311 occasions de consommation d’alcool, nichées dans 880 polyconsommateurs). Les données sont issues de l’Enquête sur les campus canadiens (2004), menée auprès d’un échantillon représentatif de 6282 étudiants issus de 40 universités. Le statut de polyconsommateur est associé à la consommation excessive d’alcool, mais pas à la conduite d’une voiture suite à la consommation. Cependant, la consommation simultanée d’alcool et de cannabis n’est pas associée à un risque plus élevé de consommer excessivement de l’alcool, et est négativement associée à la conduite d’une voiture après la consommation. Plusieurs caractéristiques situationnelles sont associées aux deux comportements à l’étude et diminuent la force d’association entre ces comportements et le statut de polyconsommateur.
Resumo:
Contexte: Le diabète de type 2 est un problème de santé publique important. La pratique régulière de l’activité physique contribue à la prévention de cette maladie chronique. Toutefois, peu de recherches portent sur l’association entre l’activité physique de transport, notamment la marche utilitaire, et le diabète. Objectif : L’objectif de cette étude est d’examiner l’association entre la présence d’un diagnostic de diabète de type 2 et les pratiques de marche utilitaire dans un échantillon transversal. Méthode : Cette étude est une analyse secondaire de données provenant d’un projet de recherche sur l’implantation d’un système de vélos libre-service. 7012 adultes ont été recrutés par téléphone au printemps 2009, à l’automne 2009 et à l’automne 2010. La marche utilitaire a été mesurée en utilisant des questions adaptées du International Physical Activity Questionnaire (IPAQ). L’association entre la marche utilitaire et le diabète auto-rapporté a été examinée au moyen d’analyses de régression logistique multivariées. L’influence des variables socio- démographiques, du niveau d’activité physique autre et de l’indice de masse corporelle a été contrôlée. Des analyses de sensibilité ont aussi été faites, utilisant un seuil différent pour le temps de marche utilitaire. Résultats : Dans le modèle final, la marche utilitaire est associée à une prévalence du diabète plus faible (RC=0,721; IC 95% : 0,547-0,950). Conclusion: La pratique de la marche utilitaire est associée à une prévalence plus faible de diabète auto-rapporté. La promotion de ce type d’activité physique aurait sa place dans la prévention du diabète dans une perspective de santé publique.
Predicting random level and seasonality of hotel prices. A structural equation growth curve approach
Resumo:
This article examines the effect on price of different characteristics of holiday hotels in the sun-and-beach segment, under the hedonic function perspective. Monthly prices of the majority of hotels in the Spanish continental Mediterranean coast are gathered from May to October 1999 from the tour operator catalogues. Hedonic functions are specified as random-effect models and parametrized as structural equation models with two latent variables, a random peak season price and a random width of seasonal fluctuations. Characteristics of the hotel and the region where they are located are used as predictors of both latent variables. Besides hotel category, region, distance to the beach, availability of parking place and room equipment have an effect on peak price and also on seasonality. 3- star hotels have the highest seasonality and hotels located in the southern regions the lowest, which could be explained by a warmer climate in autumn
Resumo:
La crisis que se desató en el mercado hipotecario en Estados Unidos en 2008 y que logró propagarse a lo largo de todo sistema financiero, dejó en evidencia el nivel de interconexión que actualmente existe entre las entidades del sector y sus relaciones con el sector productivo, dejando en evidencia la necesidad de identificar y caracterizar el riesgo sistémico inherente al sistema, para que de esta forma las entidades reguladoras busquen una estabilidad tanto individual, como del sistema en general. El presente documento muestra, a través de un modelo que combina el poder informativo de las redes y su adecuación a un modelo espacial auto regresivo (tipo panel), la importancia de incorporar al enfoque micro-prudencial (propuesto en Basilea II), una variable que capture el efecto de estar conectado con otras entidades, realizando así un análisis macro-prudencial (propuesto en Basilea III).
Resumo:
We propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The relevance of such specification is that it incorporates simultaneously micro-prudential factors (Basel 2) as well as macro-prudential and systemic factors (Basel 3) as determinants of financial distress. Results indicate network externalities are an important determinant of financial health of a financial institutions. The parameter that measures the effect of network externalities is both economically and statistical significant and its inclusion as a risk factor reduces the importance of the firm specific variables such as the size or degree of leverage of the financial institution. In addition we analyze the policy implications of the network factor model for capital requirements and deposit insurance pricing.
Resumo:
The Marbled Murrelet (Brachyramphus marmoratus) is a threatened alcid that nests almost exclusively in old-growth forests along the Pacific coast of North America. Nesting habitat has significant economic importance. Murrelet nests are extremely difficult and costly to find, which adds uncertainty to management and conservation planning. Models based on air photo interpretation of forest cover maps or assessments by low-level helicopter flights are currently used to rank presumed Marbled Murrelet nesting habitat quality in British Columbia. These rankings are assumed to correlate with nest usage and murrelet breeding productivity. Our goal was to find the models that best predict Marbled Murrelet nesting habitat in the ground-accessible portion of the two regions studied. We generated Resource Selection Functions (RSF) using logistic regression models of ground-based forest stand variables gathered at plots around 64 nests, located using radio-telemetry, versus 82 random habitat plots. The RSF scores are proportional to the probability of nests occurring in a forest patch. The best models differed somewhat between the two regions, but include both ground variables at the patch scale (0.2-2.0 ha), such as platform tree density, height and trunk diameter of canopy trees and canopy complexity, and landscape scale variables such as elevation, aspect, and slope. Collecting ground-based habitat selection data would not be cost-effective for widespread use in forestry management; air photo interpretation and low-level aerial surveys are much more efficient methods for ranking habitat suitability on a landscape scale. This study provides one method for ground-truthing the remote methods, an essential step made possible using the numerical RSF scores generated herein.
Resumo:
Rapid economic growth in China has resulted in substantially improved household incomes. Diets have also changed, with a movement away from traditional foods and towards animal products and processed foods. Yet micronutrient deficiencies, particularly for calcium and vitamin A, are still widespread in China. In this research we model the determinants of the intakes of these micronutrients using household panel data, asking particularly whether continuing income increases are likely to cause the deficiencies to be overcome. Nonparametric kernel regressions and random effects panel regression models are employed. The results show a statistically significant but relatively small positive income effect on both nutrient intakes. The local availability of milk is seen to have a strong positive effect on intakes of both micronutrients. Thus, rather than relying on increasing incomes to overcome deficiencies, supplementary government policies, such as school milk programmes, may be warranted.
Resumo:
Objectives: To assess the potential source of variation that surgeon may add to patient outcome in a clinical trial of surgical procedures. Methods: Two large (n = 1380) parallel multicentre randomized surgical trials were undertaken to compare laparoscopically assisted hysterectomy with conventional methods of abdominal and vaginal hysterectomy; involving 43 surgeons. The primary end point of the trial was the occurrence of at least one major complication. Patients were nested within surgeons giving the data set a hierarchical structure. A total of 10% of patients had at least one major complication, that is, a sparse binary outcome variable. A linear mixed logistic regression model (with logit link function) was used to model the probability of a major complication, with surgeon fitted as a random effect. Models were fitted using the method of maximum likelihood in SAS((R)). Results: There were many convergence problems. These were resolved using a variety of approaches including; treating all effects as fixed for the initial model building; modelling the variance of a parameter on a logarithmic scale and centring of continuous covariates. The initial model building process indicated no significant 'type of operation' across surgeon interaction effect in either trial, the 'type of operation' term was highly significant in the abdominal trial, and the 'surgeon' term was not significant in either trial. Conclusions: The analysis did not find a surgeon effect but it is difficult to conclude that there was not a difference between surgeons. The statistical test may have lacked sufficient power, the variance estimates were small with large standard errors, indicating that the precision of the variance estimates may be questionable.
Resumo:
The paper introduces an efficient construction algorithm for obtaining sparse linear-in-the-weights regression models based on an approach of directly optimizing model generalization capability. This is achieved by utilizing the delete-1 cross validation concept and the associated leave-one-out test error also known as the predicted residual sums of squares (PRESS) statistic, without resorting to any other validation data set for model evaluation in the model construction process. Computational efficiency is ensured using an orthogonal forward regression, but the algorithm incrementally minimizes the PRESS statistic instead of the usual sum of the squared training errors. A local regularization method can naturally be incorporated into the model selection procedure to further enforce model sparsity. The proposed algorithm is fully automatic, and the user is not required to specify any criterion to terminate the model construction procedure. Comparisons with some of the existing state-of-art modeling methods are given, and several examples are included to demonstrate the ability of the proposed algorithm to effectively construct sparse models that generalize well.
Resumo:
BACKGROUND: Single nucleotide polymorphisms (SNPs) in genes encoding the components involved in the hypothalamic pathway may influence weight gain and dietary factors may modify their effects. AIM: We conducted a case-cohort study to investigate the associations of SNPs in candidate genes with weight change during an average of 6.8 years of follow-up and to examine the potential effect modification by glycemic index (GI) and protein intake. METHODS AND FINDINGS: Participants, aged 20-60 years at baseline, came from five European countries. Cases ('weight gainers') were selected from the total eligible cohort (n = 50,293) as those with the greatest unexplained annual weight gain (n = 5,584). A random subcohort (n = 6,566) was drawn with the intention to obtain an equal number of cases and noncases (n = 5,507). We genotyped 134 SNPs that captured all common genetic variation across the 15 candidate genes; 123 met the quality control criteria. Each SNP was tested for association with the risk of being a 'weight gainer' (logistic regression models) in the case-noncase data and with weight gain (linear regression models) in the random subcohort data. After accounting for multiple testing, none of the SNPs was significantly associated with weight change. Furthermore, we observed no significant effect modification by dietary factors, except for SNP rs7180849 in the neuromedin β gene (NMB). Carriers of the minor allele had a more pronounced weight gain at a higher GI (P = 2 x 10⁻⁷). CONCLUSIONS: We found no evidence of association between SNPs in the studied hypothalamic genes with weight change. The interaction between GI and NMB SNP rs7180849 needs further confirmation.
Resumo:
BACKGROUND: Several studies have shown that adherence to the Mediterranean Diet measured by using the Mediterranean diet score (MDS) is associated with lower obesity risk. The newly proposed Nordic Diet could hold similar beneficial effects. Because of the increasing focus on the interaction between diet and genetic predisposition to adiposity, studies should consider both diet and genetics. OBJECTIVE: We investigated whether FTO rs9939609 and TCF7L2 rs7903146 modified the association between the MDS and Nordic diet score (NDS) and changes in weight (Δweight), waist circumference (ΔWC), and waist circumference adjusted for body mass index (BMI) (ΔWCBMI). DESIGN: We conducted a case-cohort study with a median follow-up of 6.8 y that included 11,048 participants from 5 European countries; 5552 of these subjects were cases defined as individuals with the greatest degree of unexplained weight gain during follow-up. A randomly selected subcohort included 6548 participants, including 5496 noncases. Cases and noncases were compared in analyses by using logistic regression. Continuous traits (ie, Δweight, ΔWC, and ΔWCBMI) were analyzed by using linear regression models in the random subcohort. Interactions were tested by including interaction terms in models. RESULTS: A higher MDS was significantly inversely associated with case status (OR: 0.98; 95% CI: 0.96, 1.00), ΔWC (β = -0.010 cm/y; 95% CI: -0.020, -0.001 cm/y), and ΔWCBMI (β = -0.008; 95% CI:-0.015, -0.001) per 1-point increment but not Δweight (P = 0.53). The NDS was not significantly associated with any outcome. There was a borderline significant interaction between the MDS and TCF7L2 rs7903146 on weight gain (P = 0.05), which suggested a beneficial effect of the MDS only in subjects who carried 1 or 2 risk alleles. FTO did not modify observed associations. CONCLUSIONS: A high MDS is associated with a lower ΔWC and ΔWCBMI, regardless of FTO and TCF7L2 risk alleles. For Δweight, findings were less clear, but the effect may depend on the TCF7L2 rs7903146 variant. The NDS was not associated with anthropometric changes during follow-up.
Resumo:
Forecasting wind power is an important part of a successful integration of wind power into the power grid. Forecasts with lead times longer than 6 h are generally made by using statistical methods to post-process forecasts from numerical weather prediction systems. Two major problems that complicate this approach are the non-linear relationship between wind speed and power production and the limited range of power production between zero and nominal power of the turbine. In practice, these problems are often tackled by using non-linear non-parametric regression models. However, such an approach ignores valuable and readily available information: the power curve of the turbine's manufacturer. Much of the non-linearity can be directly accounted for by transforming the observed power production into wind speed via the inverse power curve so that simpler linear regression models can be used. Furthermore, the fact that the transformed power production has a limited range can be taken care of by employing censored regression models. In this study, we evaluate quantile forecasts from a range of methods: (i) using parametric and non-parametric models, (ii) with and without the proposed inverse power curve transformation and (iii) with and without censoring. The results show that with our inverse (power-to-wind) transformation, simpler linear regression models with censoring perform equally or better than non-linear models with or without the frequently used wind-to-power transformation.
Resumo:
The aim of this study was to assess and improve the accuracy of biotransfer models for the organic pollutants (PCBs, PCDD/Fs, PBDEs, PFCAs, and pesticides) into cow’s milk and beef used in human exposure assessment. Metabolic rate in cattle is known as a key parameter for this biotransfer, however few experimental data and no simulation methods are currently available. In this research, metabolic rate was estimated using existing QSAR biodegradation models of microorganisms (BioWIN) and fish (EPI-HL and IFS-HL). This simulated metabolic rate was then incorporated into the mechanistic cattle biotransfer models (RAIDAR, ACC-HUMAN, OMEGA, and CKow). The goodness of fit tests showed that RAIDAR, ACC-HUMAN, OMEGA model performances were significantly improved using either of the QSARs when comparing the new model outputs to observed data. The CKow model is the only one that separates the processes in the gut and liver. This model showed the lowest residual error of all the models tested when the BioWIN model was used to represent the ruminant metabolic process in the gut and the two fish QSARs were used to represent the metabolic process in the liver. Our testing included EUSES and CalTOX which are KOW-regression models that are widely used in regulatory assessment. New regressions based on the simulated rate of the two metabolic processes are also proposed as an alternative to KOW-regression models for a screening risk assessment. The modified CKow model is more physiologically realistic, but has equivalent usability to existing KOW-regression models for estimating cattle biotransfer of organic pollutants.
Resumo:
A dynamical wind-wave climate simulation covering the North Atlantic Ocean and spanning the whole 21st century under the A1B scenario has been compared with a set of statistical projections using atmospheric variables or large scale climate indices as predictors. As a first step, the performance of all statistical models has been evaluated for the present-day climate; namely they have been compared with a dynamical wind-wave hindcast in terms of winter Significant Wave Height (SWH) trends and variance as well as with altimetry data. For the projections, it has been found that statistical models that use wind speed as independent variable predictor are able to capture a larger fraction of the winter SWH inter-annual variability (68% on average) and of the long term changes projected by the dynamical simulation. Conversely, regression models using climate indices, sea level pressure and/or pressure gradient as predictors, account for a smaller SWH variance (from 2.8% to 33%) and do not reproduce the dynamically projected long term trends over the North Atlantic. Investigating the wind-sea and swell components separately, we have found that the combination of two regression models, one for wind-sea waves and another one for the swell component, can improve significantly the wave field projections obtained from single regression models over the North Atlantic.
Resumo:
Child oral health-related quality of life (COHRQoL) has been increasingly assessed; however, few studies appraised the influence of socioeconomic status on COHRQoL in developing countries. This study assessed the relationship of COHRQoL with socioeconomic backgrounds and clinical factors. This study followed a cross-sectional design, with a multistage random sample of 792 schoolchildren aged 12 years, representative of Santa Maria, a southern city in Brazil. Participants completed the Brazilian version of the Child Perceptions Questionnaire (CPQ(11-14)), their parents or guardians answered questions on socioeconomic status, and a dental examination provided information on the prevalence of caries, dental trauma and occlusion. The assessment of association used hierarchically adjusted Poisson regression models. Higher impacts on COHRQoL were observed for children presenting with untreated dental caries (RR 1.20; 95% CI 1.07-1.35) and maxillary overjet (RR 1.19; 95% CI 1.02-1.40). Socioeconomic factors also associated with COHRQoL; poorer scores were reported by children whose mothers have not completed primary education (RR 1.30; 95% CI 1.17-1.44) and those with lower household income (RR 1.13; 95% CI 1.02-1.26). Poor socioeconomic standings and poor dental status have a negative impact on COHRQoL; reducing health inequalities may demand dental programmes and policies targeting deprived population.