972 resultados para Random Amplified Polymorphic DNA Technique
Resumo:
The Amplified Fragment Length Polymorphism (AFLP) technique was used to access genetic diversity between three domestic and nine wild proso millet biotypes from the United States and Canada. Eight primer combinations detected 39 polymorphic DNA fragments, with the genetic distance estimates among biotypes ranging from 0.02 to 0.04. Colorado-Weld County black seeded and Wyoming-Platte County were the most distinct biotypes according to the dissimilarity level. A UPGMA cluster analysis revealed two distinct groups of proso millet without any geographic association. Six weed biotypes exhibiting some characters of cultivated plants were grouped together with domesticated biotypes of proso millet while the three typical wild phenotypes were clearly clustered into another group according to AFLP markers.
Resumo:
Bovine papillomavirus type 1 (BPV-1) induces fibropapillomas in its natural host and can transform fibroblasts in culture. The viral genome is maintained as an episome within fibroblasts, which has allowed extensive genetic analyses of the viral functions required for DNA replication, gene expression, and transformation. Much less is known about BPV-1 gene expression and replication in bovine epithelial cells because the study of the complete viral life cycle requires an experimental system capable of generating a fully differentiated stratified bovine epithelium. Using a combination of organotypic raft cultures and xenografts on nude mice, we have developed a system in which BPV-1 can replicate and produce infectious viral particles. Organotypic cultures were established with bovine keratinocytes plated on a collagen raft containing BPV-1-transformed fibroblasts. These keratinocytes were infected with virus particles isolated from a bovine wart or were transfected with cloned BPV-1 DNA. Several days after the rafts were lifted to the air interface, they were grafted on nude mice. After 6–8 weeks, large xenografts were produced that exhibited a hyperplastic and hyperkeratotic epithelium overlying a large dermal fibroma. These lesions were strikingly similar to a fibropapilloma caused by BPV-1 in the natural host. Amplified viral DNA and capsid antigens were detected in the suprabasal cells of the epithelium. Moreover, infectious virus particles could be isolated from these lesions and quantitated by a focus formation assay on mouse cells in culture. Interestingly, analysis of grafts produced with infected and uninfected fibroblasts indicated that the fibroma component was not required for productive infection or morphological changes characteristic of papillomavirus-infected epithelium. This system will be a powerful tool for the genetic analysis of the roles of the viral gene products in the complete viral life cycle.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.
Resumo:
One hundred seventy nine Vibrio cholerae non-O1/non-O139 strains from clinical and different environmental sources isolated in Brazil from 1991 to 2000 were serogrouped and screened for the presence of four different virulence factors. The Random Amplification of Polymorphic DNA (RAPD) technique was used to evaluate the genetic relatedness among strains. Fifty-four different serogroups were identified and V. cholerae O26 was the most common (7.8%). PCR analysis for three genes (ctxA, zot, ace) located of the CTX genetic element and one gene (tcpA) located on the VPI pathogenicity island showed that 27 strains harbored one or more of these genes. Eight (4.5%) strains possessed the complete set of CTX element genes and all but one of these belonged to the O26 serogroup suggesting that V. cholerae O26 has the potential to be an epidemic strain. The RAPD profiles revealed a wide variability among strains and no genetic correlation was observed.
Genetic and antigenic analysis of Babesia bigemina isolates from five geographical regions of Brazil
Resumo:
A molecular epidemiological study was performed with Babesia bigemina isolates from five geographical regions of Brazil. The genetic analysis was done with random amplification of polymorphic DNA (RAPD), repetitive extragenic palindromic elements-polymerase chain reaction (REP-PCR) and enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR) that showed genetic polymorphism between these isolates and generated fingerprinting. In RAPD, ILO872 and ILO876 primers were able to detect at least one fingerprinting for each B. bigemina isolate. The amplification of B. bigemina DNA fragments by REP-PCR and ERIC-PCR gave evidence for the presence in this haemoprotozoan of the sequences described previously in microorganisms of the bacterial kingdom. For the first time it was demonstrated that both techniques can be used for genetic analysis of a protozoan parasite, although the ERIC-PCR was more discriminatory than REP-PCR. The dendogram with similarity coefficient among isolates showed two clusters and one subcluster. The Northeastern and Mid-Western isolates showed the greatest genetic diversity, while the Southeastern and Southern isolates were the closest. The antigenic analysis was done through indirect fluorescent antibody technique and Western blotting using a panel of monoclonal antibodies directed against epitopes on the merozoite membrane surface, rhoptries and membrane of infected erythrocytes. As expected, the merozoite variable surface antigens, major surface antigen (MSA)-1 and MSA-2 showed antigenic diversity. However, B cell epitopes on rhoptries and infected erythrocytes were conserved among all isolates studied. In this study it was possible to identify variable and conserved antigens, which had already been described as potential immunogens. Considering that an attenuated Babesia clone used as immunogen selected populations capable of evading the immunity induced by this vaccine, it is necessary to evaluate more deeply the cross-protection conferred by genetically more distant Brazilian B. bigemina isolates and make an evaluation of the polymorphism degree of variable antigens such as MSA-1 and MSA-2.
Resumo:
Proso millet (Panicum miliaceum L.) is a serious weed in North America. A high number of wild proso millet biotypes are known but the genetic basis of its phenotypic variation is poorly understood. In the present study, a non-radioactive silver staining method for PCR-Amplified Fragment Length Polymorphism (AFLP) was evaluated for studying genetic polymorphism in American proso millet biotypes. Twelve biotypes and eight primer combinations with two/three and three/three selective nucleotides were used. Pair of primers with two/three selective nucleotides produced the highest number of amplified DNA fragments, while pair of primers with three/three selective nucleotides were more effective for revealing more polymorphic DNA fragments. The two better primer combinations were EcoR-AAC/Mse-CTT and EcoR-ACT/Mse-CAA with seven and eleven polymorphic DNA fragments, respectively. In a total of 450 amplified fragments, at least 339 appeared well separated in a silver stained acrylamide gel and 39 polymorphic DNA bands were scored. The level of polymorphic DNA (11.5%) using only eight pairs of primers were effective for grouping proso millet biotypes in two clusters but insufficient for separating hybrid biotypes from wild and crop. Nevertheless, the present result indicates that silver stained AFLP markers could be a cheap and important tool for studying genetic relationships in proso millet.
Resumo:
In this study, we describe the first survey in Thailand of Trypanosoma theileri, a widespread and prevalent parasite of cattle that is transmitted by tabanid flies. Investigation of 210 bovine blood samples of Thai cattle from six farms by hematocrit centrifuge technique (HCT) revealed 14 samples with trypanosomes morphologically compatible to T. theileri. Additional animals were positive for T. theileri by PCR based on the Cathepsin L-like sequence (TthCATL-PCR) despite negative by HCT, indicating cryptic infections. Results revealed a prevalence of 26 +/- 15% (95% CI) of T. theileri infection. Additionally, 12 samples positive for T. theileri were detected in cattle from other 11 farms. From a total of 30 blood samples positive by HCT and/or PCR from 17 farms, seven were characterized to evaluate the genetic polymorphism of T. theileri through sequence analysis of PCR-amplified CATL DNA sequences. All CATL sequences of T. theileri from Thai cattle clustered with sequences of the previously described phylogenetic lineages TthI and TthII, supporting only two major lineages of T. theileri in cattle around the world. However, 11 of the 29 CATL sequences analyzed showed to be different, disclosing an unexpectedly large polymorphic genetic repertoire, with multiple genotypes of T. theileri not previously described in other countries circulating in Thai cattle. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work reports the characterization of 11 polymorphic microsatellite loci in section Caulorrhizae. The primer pairs were designed from Arachis pintoi and showed full transferability to Arachis repens species. These new markers were used to evaluate the genetic diversity in germplasm (accessions and cultivars) of section Caulorrhizae. This new set of markers detected greater gene diversity than morphological and molecular markers such as AFLP (amplified fragment length polymorphism) and RAPD (rapid analysis of polymorphic DNA) previously used in this germplasm.
Resumo:
The PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was optimized and used for assessing genomic variability among eight Thiobacillus ferrooxidans strains. RAPD fingerprints presented variation for the thirty primers used, giving a total of 269 polymorphic bands. Similarity coefficients between the strains were calculated, and UPGMA cluster analysis was used to generate a dendrogram showing relationships among them. Most primers divided T. ferrooxidans strains in two distinct groups - Group 1: S, SSP, V3, AMF and Group 2: CMV, FG-460, I-35, LR. We observed that the T. ferrooxidans strains used in this work have a high degree of genomic diversity and that RAPD is a powerful method to differentiate them.
Resumo:
Fig (Ficus carica) breeding programs that use conventional approaches to develop new cultivars are rare, owing to limited genetic variability and the difficulty in obtaining plants via gamete fusion. Cytosine methylation in plants leads to gene repression, thereby affecting transcription without changing the DNA sequence. Previous studies using random amplification of polymorphic DNA and amplified fragment length polymorphism markers revealed no polymorphisms among select fig mutants that originated from gamma-irradiated buds. Therefore, we conducted methylation-sensitive amplified polymorphism analysis to verify the existence of variability due to epigenetic DNA methylation among these mutant selections compared to the main cultivar 'Roxo-de-Valinhos'. Samples of genomic DNA were double-digested with either HpaII (methylation sensitive) or MspI (methylation insensitive) and with EcoRI. Fourteen primer combinations were tested, and on an average, non-methylated CCGG, symmetrically methylated CmCGG, and hemimethylated hmCCGG sites accounted for 87.9, 10.1, and 2.0%, respectively. MSAP analysis was effective in detecting differentially methylated sites in the genomic DNA of fig mutants, and methylation may be responsible for the phenotypic variation between treatments. Further analyses such as polymorphic DNA sequencing are necessary to validate these differences, standardize the regions of methylation, and analyze reads using bioinformatic tools. © FUNPEC-RP.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.
Resumo:
We have developed a technique for isolating DNA markers tightly linked to a target region that is based on RLGS, named RLGS spot-bombing (RLGS-SB). RLGS-SB allows us to scan the genome of higher organisms quickly and efficiently to identify loci that are linked to either a target region or gene of interest. The method was initially tested by analyzing a C57BL/6-GusS mouse congenic strain. We identified 33 variant markers out of 10,565 total loci in a 4.2-centimorgan (cM) interval surrounding the Gus locus in 4 days of laboratory work. The validity of RLGS-SB to find DNA markers linked to a target locus was also tested on pooled DNA from segregating backcross progeny by analyzing the spot intensity of already mapped RLGS loci. Finally, we used RLGS-SB to identify DNA markers closely linked to the mouse reeler (rl) locus on chromosome 5 by phenotypic pooling. A total of 31 RLGS loci were identified and mapped to the target region after screening 8856 loci. These 31 loci were mapped within 11.7 cM surrounding rl. The average density of RLGS loci located in the rl region was 0.38 cM. Three loci were closely linked to rl showing a recombination frequency of 0/340, which is < 1 cM from rl. Thus, RLGS-SB provides an efficient and rapid method for the detection and isolation of polymorphic DNA markers linked to a trait or gene of interest.
Resumo:
The I-3 gene from the wild tomato species Lycopersicon pennellii confers resistance to race 3 of the devastating vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici. As an initial step in a positional cloning strategy for the isolation of I-3, we converted restriction fragment length polymorphism and conserved orthologue set markers, known genes and a resistance gene analogue (RGA) mapping to the I-3 region into PCR-based sequence characterised amplified region (SCAR) and cleaved amplified polymorphic sequence (CAPS) markers. Additional PCR-based markers in the I-3 region were generated using the randomly amplified DNA fingerprinting (RAF) technique. SCAR, CAPS and RAF markers were used for high-resolution mapping around the I-3 locus. The I-3 gene was localised to a 0.3-cM region containing a RAF marker, eO6, and an RGA, RGA332. RGA332 was cloned and found to correspond to a putative pseudogene with at least two loss-of-function mutations. The predicted pseudogene belongs to the Toll interleukin-1 receptor-nucleotide-binding site-leucine-rich-repeat sub-class of plant disease resistance genes. Despite the presence of two RGA332 homologues in L. esculentum, DNA gel blot and PCR analysis suggests that no other homologues are present in lines carrying I-3 that could be alternative candidates for the gene.
Resumo:
Objectives: A rapid random amplification of polymorphic DNA (RAPD) technique was developed to distinguish between strains of coagulase-negative staphylococci (CoNS) involved in central venous catheter (CVC)-related bloodstream infection. Its performance was compared with that of pulsed-field gel electrophoresis (PFGE). Methods: Patients at the University Hospital Birmingham NHS Foundation Trust, U.K. who underwent stem cell transplantation and were diagnosed with CVC-related bloodstream infection due to CoNS whilst on the bone marrow transplant unit were studied. Isolates of CoNS were genotyped by PFGE and RAPD, the latter employing a single primer and a simple DNA extraction method. Results: Both RAPD and PFGE were highly discriminatory (Simpson's diversity index, 0.96 and 0.99, respectively). Within the 49 isolates obtained from blood cultures of 33 patients, 20 distinct strains were identified by PFGE and 25 by RAPD. Of the 25 strains identified by RAPD, nine clusters of CoNS contained isolates from multiple patients, suggesting limited nosocomial spread. However, there was no significant association between time of inpatient stay and infection due to any particular strain. Conclusion: The RAPD technique presented allows CoNS strains to be genotyped with high discrimination within 4 h, facilitating real-time epidemiological investigations. In this study, no single strain of CoNS was associated with a significant number of CVC-related bloodstream infections. © 2005 Published by Elsevier Ltd on behalf of the British Infection Society.