978 resultados para Radiotherapy dosage
Resumo:
BACKGROUND: Predicting outcome of breast cancer (BC) patients based on sentinel lymph node (SLN) status without axillary lymph node dissection (ALND) is an area of uncertainty. It influences the decision-making for regional nodal irradiation (RNI). The aim of the NORA (NOdal RAdiotherapy) survey was to examine the patterns of RNI. METHODS: A web-questionnaire, including several clinical scenarios, was distributed to 88 EORTC-affiliated centers. Responses were received between July 2013 and January 2014. RESULTS: A total of 84 responses were analyzed. While three-dimensional (3D) radiotherapy (RT) planning is carried out in 81 (96%) centers, nodal areas are delineated in only 51 (61%) centers. Only 14 (17%) centers routinely link internal mammary chain (IMC) and supraclavicular node (SCN) RT indications. In patients undergoing total mastectomy (TM) with ALND, SCN-RT is recommend by 5 (6%), 53 (63%) and 51 (61%) centers for patients with pN0(i+), pN(mi) and pN1, respectively. Extra-capsular extension (ECE) is the main factor influencing decision-making RNI after breast conserving surgery (BCS) and TM. After primary systemic therapy (PST), 49 (58%) centers take into account nodal fibrotic changes in ypN0 patients for RNI indications. In ypN0 patients with inner/central tumors, 23 (27%) centers indicate SCN-RT and IMC-RT. In ypN1 patients, SCN-RT is delivered by less than half of the centers in patients with ypN(i+) and ypN(mi). Twenty-one (25%) of the centers recommend ALN-RT in patients with ypN(mi) or 1-2N+ after ALND. Seventy-five (90%) centers state that age is not considered a limiting factor for RNI. CONCLUSION: The NORA survey is unique in evaluating the impact of SLNB/ALND status on adjuvant RNI decision-making and volumes after BCS/TM with or without PST. ALN-RT is often indicated in pN1 patients, particularly in the case of ECE. Besides the ongoing NSABP-B51/RTOG and ALLIANCE trials, NORA could help to design future specific RNI trials in the SLNB era without ALND in patients receiving or not PST.
Resumo:
OBJECTIVE: This study investigated the effectiveness of stereotactic body radiotherapy with helical TomoTherapy (T-SBRT) for treating medically inoperable primary and second-primary early stage non-small-cell lung neoplasm (SPLN) and evaluated whether the movement of organizing pneumonia (OP) within the irradiation field (IF) can be detected via analysis of radiological changes. METHODS: Patients (n = 16) treated for 1 year (2011-12) at our hospital by T-SBRT at a total dose of 60 Gy in five fractions were examined retrospectively. Outcome and toxicity were recorded and were separately described for SPLN. CT scans were reviewed by a single radiologist. RESULTS: Of the 16 patients, 5 (31.3%) had primary lung malignancies, 10 (62.5%) had SPLN, and 1 case (6.3%) had isolated mediastinal metastasis of lung neoplasm. Pathological evidence was obtained for 72.2% of all lesions. The median radiological follow-up was 11 months (10.5 months for SPLN). For all cases, the 6- and 12-month survival rates were 100% and 77.7% (100% and 71.4%, respectively, for SPLN), and the 6- and 12-month locoregional control rates were 100% in all cases. 2 (12.5%) of 16 patients developed grade 3 late transient radiation pneumonitis following steroid therapy and 1 (6.3%) presented asymptomatic infiltrates comparable to OP opacities. CONCLUSION: T-SBRT seems to be safe and effective. ADVANCES IN KNOWLEDGE: Mild OP is likely associated with radiation-induced anomalies in the IF, identification of migrating opacities can help discern relapse of radiation-induced opacities.
Resumo:
BACKGROUND: HOX genes are a family of developmental genes that are expressed neither in the developing forebrain nor in the normal brain. Aberrant expression of a HOX-gene dominated stem-cell signature in glioblastoma has been linked with increased resistance to chemo-radiotherapy and sustained proliferation of glioma initiating cells. Here we describe the epigenetic and genetic alterations and their interactions associated with the expression of this signature in glioblastoma. RESULTS: We observe prominent hypermethylation of the HOXA locus 7p15.2 in glioblastoma in contrast to non-tumoral brain. Hypermethylation is associated with a gain of chromosome 7, a hallmark of glioblastoma, and may compensate for tumor-driven enhanced gene dosage as a rescue mechanism by preventing undue gene expression. We identify the CpG island of the HOXA10 alternative promoter that appears to escape hypermethylation in the HOX-high glioblastoma. An additive effect of gene copy gain at 7p15.2 and DNA methylation at key regulatory CpGs in HOXA10 is significantly associated with HOX-signature expression. Additionally, we show concordance between methylation status and presence of active or inactive chromatin marks in glioblastoma-derived spheres that are HOX-high or HOX-low, respectively. CONCLUSIONS: Based on these findings, we propose co-evolution and interaction between gene copy gain, associated with a gain of chromosome 7, and additional epigenetic alterations as key mechanisms triggering a coordinated, but inappropriate, HOX transcriptional program in glioblastoma.