912 resultados para Radio Activity in the Atmospheric
Resumo:
Methylphenidate is currently a drug of abuse and readily prescribed to both adolescents and adults. Chronic methylphenidate (MPH) exposure results in an increase in DA in the motive circuit, including the caudate nucleus (CN), similar to other drugs of abuse. This study focuses on research aimed to elucidate if there are intrinsic underlying differences in the CN electrophysiological activity of animals exhibiting different chronic responses to the same dose of MPH. Behavioral and caudate nucleus (CN) neuronal activity following acute and chronic doses of MPH was assessed by simultaneously recording the behavioral and neuronal activity. The experimental protocol lasted for 10 days using four groups; saline, 0.6, 2.5 and 10.0mg/kg MPH. Initially, the study determined that animals exposed to the same dose of MPH exhibited either behavioral sensitization or behavioral tolerance. Therefore animals were classified into two groups (behaviorally sensitized/tolerant) and their neuronal activity was evaluated. Four hundred and fifty one units were evaluated. Overall, a mixture of increases and decreases in CN neuronal populations was observed at initial MPH exposure, and at ED10 baseline and ED10 rechallenge. When separated based on their behavioral response (sensitized/tolerant), significant differences in neuronal response patterns was revealed. Animals exhibiting sensitization were more likely to increase their neuronal activity at ED1 and ED10 baseline, expressing the opposite response at ED10 rechallenge. Furthermore, when neuronal populations recorded from those animals exhibiting behavioral sensitization were statistically compared to those from animals exhibiting behavioral tolerance significant differences were observed. Collectively, these findings tell us that animals exposed to the same dose of MPH can respond oppositely and moreover that there is in fact some intrinsic difference in the two population’s neuronal activity. This study offers new insight into the electrophysiological differences between sensitized and tolerant animals.
Resumo:
During a four weeks anchoring station of R.V. ,,Meteor" on the equator at 30° W longitude, vertical profiles of wind, temperature, and humidity were measured by means of a meteorological buoy carrying a mast of 10 m height. After eliminating periods of instrumental failure, 18 days are available for the investigation of the diurnal variations of the meteorological parameters and 9 days for the investigation of the vertical heat fluxes. The diurnal variations of the above mentioned quantities are caused essentially by two periodic processes: the 24-hourly changing solar energy supply and the 12-hourly oscillation of air pressure, which both originate in the daily rotation of the earth. While the temperature of the water and of the near water layers of the air show a 24 hours period in their diurnal course, the wind speed, as a consequence of the pressure wave, has a 12 hours period, which is also observable in evaporation and, consequently, in the water vapor content of the surface layer. Concerning the temperature, a weak dependence of the daily amplitude on height was determined. Further investigation of the profiles yields relations between the vertical gradients of wind, temperature, and water vapor and the wind speed, the difference between sea and air of temperature and water vapor, respectively, thus giving a contribution to the problem of parameterizing the vertical fluxes. Mean profile coefficients for the encountered stabilities, which were slightly unstable, are presented, and correction terms are given due to the fact that the conditions at the very surface are not sufficiently represented by measuring in a water depth of 20 cm and assuming water vapor saturation. This is especially true for the water vapor content, where the relation between the gradient and the air-sea difference suggests a reduction of relative humidity to appr. 96% at the very surface, if the gradients are high. This effect may result in an overestimation of the water vapor flux, if a ,,bulk"-formula is used. Finally sensible and latent heat fluxes are computed by means of a gradient-formula. The influence of stability on the transfer process is taken into account. As the air-sea temperature differences are small, sensible heat plays no important role in that region, but latent heat shows several interesting features. Within the measuring period of 18 days, a regular variation by a factor of ten is observed. Unperiodic short term variations are superposed by periodic diurnal variations. The mean diurnal course shows a 12-hours period caused by the vertical wind speed gradient superposed by a 24-hours period due to the changing stabilities. Mean values within the measuring period are 276 ly/day for latent heat and 9.41y/day for sensible heat.
Resumo:
An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.
Resumo:
We proposed in our previous work V-substituted In2S3 as an intermediate band (IB) material able to enhance the efficiency of photovoltaic cells by combining two photons to achieve a higher energy electron excitation, much like natural photosynthesis. Here this hyper-doped material is tested in a photocatalytic reaction using wavelength-controlled light. The results evidence its ability to use photons with wavelengths of up to 750 nm, i.e. with energy significantly lower than the bandgap (=2.0 eV) of non-substituted In2S3, driving with them the photocatalytic reaction at rates comparable to those of non-substituted In2S3 in its photoactivity range (λ ≤ 650 nm). Photoluminescence spectra evidence that the same bandgap excitation as in V-free In2S3 occurs in V-substituted In2S3 upon illumination with photons in the same sub-bandgap energy range which is effective in photocatalysis, and its linear dependence on light intensity proves that this is not due to a nonlinear optical property. This evidences for the first time that a two-photon process can be active in photocatalysis in a single-phase material. Quantum calculations using GW-type many-body perturbation theory suggest that the new band introduced in the In2S3 gap by V insertion is located closer to the conduction band than to the valence band, so that hot carriers produced by the two-photon process would be of electron type; they also show that the absorption coefficients of both transitions involving the IB are of significant and similar magnitude. The results imply that V-substituted In2S3, besides being photocatalytically active in the whole visible light range (a property which could be used for the production of solar fuels), could make possible photovoltaic cells of improved efficiency.
Resumo:
Hereditary tyrosinemia type I (HT1) is an autosomal recessive inborn error of metabolism caused by the deficiency of fumarylacetoacetate hydrolase, the last enzyme in the tyrosine catabolism pathway. This defect results in accumulation of succinylacetone (SA) that reacts with amino acids and proteins to form stable adducts via Schiff base formation, lysine being the most reactive amino acid. HT1 patients surviving beyond infancy are at considerable risk for the development of hepatocellular carcinoma, and a high level of chromosomal breakage is observed in HT1 cells, suggesting a defect in the processing of DNA. In this paper we show that the overall DNA-ligase activity is low in HT1 cells (about 20% of the normal value) and that Okazaki fragments are rejoined at a reduced rate compared with normal fibroblasts. No mutation was found by sequencing the ligase I cDNA from HT1 cells, and the level of expression of the ligase I mRNA was similar in normal and HT1 fibroblasts, suggesting the presence of a ligase inhibitor. SA was shown to inhibit in vitro the overall DNA-ligase activity present in normal cell extracts. The activity of purified T4 DNA-ligase, whose active site is also a lysine residue, was inhibited by SA in a dose-dependent manner. These results suggest that accumulation of SA reduces the overall ligase activity in HT1 cells and indicate that metabolism errors may play a role in regulating enzymatic activities involved in DNA replication and repair.
Resumo:
The discrepancy between the structural longitudinal organization of the parallel-fiber system in the cerebellar cortex and the functional mosaic-like organization of the cortex has provoked controversial theories about the flow of information in the cerebellum. We address this issue by characterizing the spatiotemporal organization of neuronal activity in the cerebellar cortex by using optical imaging of voltage-sensitive dyes in isolated guinea-pig cerebellum. Parallel-fiber stimulation evoked a narrow beam of activity, which propagated along the parallel fibers. Stimulation of the mossy fibers elicited a circular, nonpropagating patch of synchronized activity. These results strongly support the hypothesis that a beam of parallel fibers, activated by a focal group of granule cells, fails to activate the Purkinje cells along most of its length. It is thus the ascending axon of the granule cell, and not its parallel branches, that activates and defines the basic functional modules of the cerebellar cortex.