963 resultados para Radiation-induced Apoptosis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gap junctional intercellular communication (GJIC) and connexin expression (Cx26 and Cx32) in mouse liver were studied after administration of 4-bis[2-(3,5 dichloropyridyloxy)]benzene (TCPOBOP), a phenobarbital-like enzyme inducer. Female C57BI/6 mice were administered TCPOBOP (5.8 mg/kg BW) and euthanized 0, 24, 48 and 72 hours later. Liver samples were snap frozen, or fixed in formalin, or submitted to GJIC analysis. The proliferating cell nuclear antigen (PCNA) immunohistochemistry and the Western blotting for Cx26 and Cx32 were performed. After 48 and 72 h of drug administration the liver-to-body weight ratio was increased 70% and 117% (p < 0.0001), respectively. There were temporal-dependent alterations in liver histopathology and a significant increase in cell proliferation was noted after 48h and sustained after 72h, though to a lesser extent (p < 0.0001). In addition. TCPOBOP administration induced apoptosis, which appeared to be time-dependent showing statistical significance only after 72h (p < 0.0001). Interestingly, a transient disruption by nearly 50% of GJIC capacity was detected after 48 h of drug ingestion, which recovered after 72 h (p = 0.003). These GJIC changes were due to altered levels of Cx26 and Cx32 in the livers of TCPOBOP-treated mice. We concluded that a single administration of TCPOBOP transiently disrupted the levels of GJIC due to decreased expression of connexins and increased apoptotic cell death in mouse liver. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Objective: Oral mucositis is a dose-limiting and painful side effect of radiotherapy (RT) and/or chemotherapy in cancer patients. The purpose of the present study was to analyze the effect of different protocols of laser phototherapy (LPT) on the grade of mucositis and degree of pain in patients under RT. Patients and Methods: Thirty-nine patients were divided into three groups: G1, where the irradiations were done three times a week using low power laser; G2, where combined high and low power lasers were used three time a week; and G3, where patients received low power laser irradiation once a week. The low power LPT was done using an InGaAlP laser (660 nm/40 mW/6 J cm(-2)/0.24 J per point). In the combined protocol, the high power LPT was done using a GaAlAs laser (808 nm, 1 W/cm(2)). Oral mucositis was assessed at each LPT session in accordance to the oral-mucositis scale of the National Institute of the Cancer-Common Toxicity criteria (NIC-CTC). The patient self-assessed pain was measured by means of the visual analogue scale. Results: All protocols of LPT led to the maintenance of oral mucositis scores in the same levels until the last RT session. Moreover, LPT three times a week also maintained the pain levels. However, the patients submitted to the once a week LPT had significant pain increase; and the association of low/high LPT led to increased healing time. Conclusions: These findings are desired when dealing with oncologic patients under RT avoiding unplanned radiation treatment breaks and additional hospital costs. Lasers Surg.Med. 41:264-270,2009. (C) 2009Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA) have been used to study the thermal decomposition, the melting behavior and low-temperature transitions of copolymers obtained by radiation-induced grafting of styrene onto poly (tetrafluoroethylene- perfluoropropylvinylether) (PFA) substrates. PFA with different contents of perfluoropropylvinylether (PPVE) as a comonomer have been investigated. A two step degradation pattern was observed from TGA thermograms of all the grafted copolymers, which was attributed to degradation of PSTY followed by the degradation of the PFA backbone at higher temperature. One broad melting peak can be identified for all copolymers, which has two components in the samples with higher PPVE content. The melting peak, crystal-crystal transition and the degree of crystallinity of the grafted copolymers increases with radiation grafting up to 50 kGy, followed by a decrease at higher doses. No such decrease was observed in the ungrafted PFA samples after irradiation. This indicated that the changes in the heats of transitions and crystallinity at low doses are due to the radiation effects on the microstructure of PFA (chain scission), whereas at higher doses the grafted PSTY is the driving force behind these changes. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

p73 has recently been identified as a structural and functional homolog of the tumor suppressor protein p53. Overexpression of p53 activates transcription of p53 effector genes, causes growth inhibition and induced apoptosis. We describe here the effects of a tumor-derived truncated transcript of p73 alpha (p73 Delta exon2) on p53 function and on cell death. This transcript, which lacks the acidic N-terminus corresponding to the transactivation domain of p53, was initially detected in a neuroblastoma cell line. Overexpression of p73 Delta exon2 partially protects lymphoblastoid cells against apoptosis induced by anti-Fas antibody or cisplatin. By cotransfecting p73 Delta exon2 with wild-type p53 in the p53 null line Saos 2, we found that this truncated transcript reduces the ability of wild-type p53 to promote apoptosis. This anti-apoptotic effect was also observed when p73 Delta exon2 was co-transfected with full-length p73 (p73 alpha). This was further substantiated by suppression of p53 transactivation of the effector gene p21-Waf1 in p73 Delta exon2 transfected cells and by inhibition of expression of a reporter gene under the control of the p53 promoter. Thus, this truncated form of p73 can act as a dominant-negative agent towards transactivation by p53 and p73 alpha, highlighting the potential implications of these findings for p53 signaling pathway. Furthermore, we demonstrate the existence of a p73 Delta exon2 transcript in a very significant proportion (46%) of breast cancer cell lines. However, a large spectrum of normal and malignant tissues need to be surveyed to determine whether this transdominant p73 variant occurs in a tumor-specific manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Human V alpha 24NKT cells are activated by alpha -galactosylceramide (alpha -GalCer)-pulsed dendritic cells in a CD1d-dependent and a T-cell receptor-mediated manner. Here, we demonstrate that CD4(+)V alpha 24NKT cells derived from a patient with acute myeloid leukemia (AML) M4 are phenotypically similar to those of healthy donors and, in common with those derived from healthy donors, express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) when the cells are activated by alpha -GalCer-pulsed dendritic cells but not prior to activation. We also show that myeloid that human activated CD4(+)V alpha 24NKT cells induced apoptosis of human leukemia cells in vivo. This is the first evidence that activated V alpha 24NKT cells express TRAIL and that TRAIL causes apoptosis of monocytic leukemia cells from patients with AML M4 in vitro and in vivo. Adoptive immune therapy with activated V alpha 24NKT cells, or other strategies to increase activated V alpha 24NKT cells in vivo, may be of benefit to patients with AML M4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The management of 12 women who presented with a second primary oesophageal cancer following radiotherapy for breast cancer was reviewed. It was concluded that nine cases fitted the classical description of a radiation-induced malignancy. Most cases were successfully managed with combined modality therapy in spite of their previous radiotherapy. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control. (C) 2003 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To increase the amount of logic available in SRAM-based FPGAs manufacturers are using nanometric technologies to boost logic density and reduce prices. However, nanometric scales are highly vulnerable to radiation-induced faults that affect values stored in memory cells. Since the functional definition of FPGAs relies on memory cells, they become highly prone to this type of faults. Fault tolerant implementations, based on triple modular redundancy (TMR) infrastructures, help to keep the correct operation of the circuit. However, TMR is not sufficient to guarantee the safe operation of a circuit. Other issues like the effects of multi-bit upsets (MBU) or fault accumulation, have also to be addressed. Furthermore, in case of a fault occurrence the correct operation of the affected module must be restored and the current state of the circuit coherently re-established. A solution that enables the autonomous correct restoration of the functional definition of the affected module, avoiding fault accumulation, re-establishing the correct circuit state in realtime, while keeping the normal operation of the circuit, is presented in this paper.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of the effect of radiation on living tissues is a rather complex task to address mainly because they are made of a set of complex functional biological structures and interfaces. Particularly if one is looking for where damage is taking place in a first stage and what are the underlying reaction mechanisms. In this work a new approach is addressed to study the effect of radiation by making use of well identified molecular hetero-structures samples which mimic the biological environment. These were obtained by assembling onto a solid support deoxyribonucleic acid (DNA) and phospholipids together with a soft water-containing polyelectrolyte precursor in layered structures and by producing lipid layers at liquid/air interface with DNA as subphase. The effects of both ultraviolet (UV) radiation and carbon ions beams were systematically investigated in these heterostructures, namely damage on DNA by means vacuum ultraviolet (VUV), infrared (IR), X-Ray Photoelectron (XPS) and impedance spectroscopy. Experimental results revealed that UV affects furanose, PO2-, thymines, cytosines and adenines groups. The XPS spectrometry carried out on the samples allowed validate the VUV and IR results and to conclude that ionized phosphate groups, surrounded by the sodium counterions, congregate hydration water molecules which play a role of UV protection. The ac electrical conductivity measurements revealed that the DNA electrical conduction is arising from DNA chain electron hopping between base-pairs and phosphate groups, with the hopping distance equal to the distance between DNA base-pairs and is strongly dependent on UV radiation exposure, due loss of phosphate groups. Characterization of DNA samples exposed to a 4 keV C3+ ions beam revealed also carbon-oxygen bonds break, phosphate groups damage and formation of new species. Results from radiation induced damage carried out on biomimetic heterostructures having different compositions revealed that damage is dependent on sample composition, with respect to functional targeted groups and extent of damage. Conversely, LbL films of 1,2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (Sodium Salt) (DPPG) liposomes, alternated with poly(allylamine hydrochloride) (PAH) revealed to be unaffected, even by prolonged UV irradiation exposure, in the absence of water molecules. However, DPPG molecules were damaged by the UV radiation in presence of water with cleavage of C-O, C=O and –PO2- bonds. Finally, the study of DNA interaction with the ionic lipids at liquid/air interfaces revealed that electrical charge of the lipid influences the interaction of phospholipid with DNA. In the presence of DNA in the subphase, the effects from UV irrladiation were seen to be smaller, which means that ionic products from biomolecules degradation stabilize the intact DPPG molecules. This mechanism may explain why UV irradiation does not cause immediate cell collapse, thus providing time for the cellular machinery to repair elements damaged by UV.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Doctoral Thesis (PhD Programm on Molecular and Environmental Biology)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The fate of infected macrophages is a critical aspect of immunity to mycobacteria. By depriving the pathogen of its intracellular niche, apoptotic death of the infected macrophage has been shown to be an important mechanism to control bacterial growth. Here, we show that IL-17 inhibits apoptosis of Mycobacterium bovis BCG- or Mycobacterium tuberculosis-infected macrophages thus hampering their ability to control bacterial growth. Mechanistically, we show that IL-17 inhibits p53, and impacts on the intrinsic apoptotic pathway, by increasing the Bcl2 and decreasing Bax expression, decreasing cytochrome c release from the mitochondria, and inhibiting caspase-3 activation. The same effect of IL-17 was observed in infected macrophages upon blockade of p53 nuclear translocation. These results reveal a previously unappreciated role for the IL-17/p53 axis in the regulation of mycobacteria-induced apoptosis and can have important implications in a broad spectrum of diseases where apoptosis of the infected cell is an important host defense mechanism.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE To establish the role of the transcription factor Pax4 in pancreatic islet expansion and survival in response to physiological stress and its impact on glucose metabolism, we generated transgenic mice conditionally and selectively overexpressing Pax4 or a diabetes-linked mutant variant (Pax4R129 W) in β-cells. RESEARCH DESIGN AND METHODS Glucose homeostasis and β-cell death and proliferation were assessed in Pax4- or Pax4R129 W-overexpressing transgenic animals challenged with or without streptozotocin. Isolated transgenic islets were also exposed to cytokines, and apoptosis was evaluated by DNA fragmentation or cytochrome C release. The expression profiles of proliferation and apoptotic genes and β-cell markers were studied by immunohistochemistry and quantitative RT-PCR. RESULTS Pax4 but not Pax4R129 W protected animals against streptozotocin-induced hyperglycemia and isolated islets from cytokine-mediated β-cell apoptosis. Cytochrome C release was abrogated in Pax4 islets treated with cytokines. Interleukin-1β transcript levels were suppressed in Pax4 islets, whereas they were increased along with NOS2 in Pax4R129 W islets. Bcl-2, Cdk4, and c-myc expression levels were increased in Pax4 islets while MafA, insulin, and GLUT2 transcript levels were suppressed in both animal models. Long-term Pax4 expression promoted proliferation of a Pdx1-positive cell subpopulation while impeding insulin secretion. Suppression of Pax4 rescued this defect with a concomitant increase in pancreatic insulin content. CONCLUSIONS Pax4 protects adult islets from stress-induced apoptosis by suppressing selective nuclear factor-κB target genes while increasing Bcl-2 levels. Furthermore, it promotes dedifferentiation and proliferation of β-cells through MafA repression, with a concomitant increase in Cdk4 and c-myc expression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.