310 resultados para Radiant heats
Resumo:
ContentsMcCarney hospitalized after strokePresidential hopefulsIncreased enrollment heats apartment racesStudents cause competition for regular housingResidents need to beware KingBreaking rules for Valentine's Day
Resumo:
The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX-Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well-represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust.
Resumo:
We present a study of the model spin-glass LiHo0.5Er0.5F4 using simultaneous ac susceptibility, magnetization, and magnetocaloric effect measurements along with small angle neutron scattering (SANS) at sub-Kelvin temperatures. All measured bulk quantities reveal hysteretic behavior when the field is applied along the crystallographic c axis. Furthermore, avalanchelike relaxation is observed in a static field after ramping from the zero-field-cooled state up to 200–300 Oe. SANS measurements are employed to track the microscopic spin reconfiguration throughout both the hysteresis loop and the related relaxation. Comparing the SANS data to inhomogeneous mean-field calculations performed on a box of one million unit cells provides a real-space picture of the spin configuration. We discover that the avalanche is being driven by released Zeeman energy, which heats the sample and creates positive feedback, continuing the avalanche. The combination of SANS and mean-field simulations reveal that the conventional distribution of cluster sizes is replaced by one with a depletion of intermediate cluster sizes for much of the hysteresis loop.
Resumo:
This the tenth in a series of symposia devoted to talks by students on their biochemical engineering research. The first, third, fifth, and ninth were at Kansas State University in Manhattan, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City in conjunction with the 81st American Institute of Chemical Engineers National Meeting, the seventh was at Iowa State University in Ames, and the eighth was held at the University of Missouri–Columbia. Contents"Combined Autohydrolysis-Organosolv Pretreatment of Lignocellulosic Materials," Robert A. Lewis, Colorado State University "An Investigation of Cellulase Activity Assays," Minhhuong Nguyen, University of Missouri–Columbia "Action Pattern of a Xylobiohydrolase from Aspergillus niger," Mary M. Frederick, Iowa State University "Estimation of Heats of Combustion of Biomass from Elemental Analysis Using Available Electron Concepts," Snehal A. Patel, Kansas State University "Design of a Wheat Straw to Ethanol Conversion Facility," Michael M. Meagher, Colorado State University "Effects of Salt, Heat, and Physical Form on the Fermentation of Bananas," Carl Drewel, University of Missouri–Columbia "Gas Hold-up in the Downflow Section of a Split Cylinder Airlift Column," Vasanti Deshpande, Kansas State University "Measurement of Michaelis Constants for Soluble and Immobilized Glucoamylase," Robert A. Lesch, Iowa State University "Kinetics of Alkaline Oxidation and Degradation of Sugars," Alfred R. Fratzke, Iowa State University "Stability of Cereal Protein During Microbial Growth on Grain Dust," Bamidele O. Solomon, Kansas State University
Resumo:
We report U-Pb and 39Ar-40Ar measurements on plutonic rocks recovered from the Ocean Drilling Program (ODP) Legs 173 and 210. Drilling revealed continental crust (Sites 1067 and 1069) and exhumed mantle (Sites 1070 and 1068) along the Iberia margin and exhumed mantle (Site 1277) on the conjugate Newfoundland margin. Our data record a complex igneous and thermal history related to the transition from rifting to seafloor spreading. The results show that the rift-to-drift transition is marked by a stuttering start of MORB-type magmatic activity. Subsequent to initial alkaline magmatism, localized mid-oceanic ridge basalts (MORB) magmatism was again replaced by basin-wide alkaline events, caused by a low degree of decompression melting due to tectonic delocalization of deformation. Such "off-axis" magmatism might be a common process in (ultra-) slow oceanic spreading systems, where "magmatic" and "tectonic" spreading varies in both space and time.
Resumo:
Over broad thermal gradients, the effect of temperature on aerobic respiration and photosynthesis rates explains variation in community structure and function. Yet for local communities, temperature dependent trophic interactions may dominate effects of warming. We tested the hypothesis that food chain length modifies the temperature-dependence of ecosystem fluxes and community structure. In a multi-generation aquatic food web experiment, increasing temperature strengthened a trophic cascade, altering the effect of temperature on estimated mass-corrected ecosystem fluxes. Compared to consumer-free and 3-level food chains, grazer-algae (2-level) food chains responded most strongly to the temperature gradient. Temperature altered community structure, shifting species composition and reducing zooplankton density and body size. Still, food chain length did not alter the temperature dependence of net ecosystem fluxes. We conclude that locally, food chain length interacts with temperature to modify community structure, but only temperature, not food chain length influenced net ecosystem fluxes.