909 resultados para Rademacher complexity bound
Resumo:
In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.
Resumo:
We consider a time division duplex multiple-input multiple-output (nt × nr MIMO). Using channel state information (CSI) at the transmitter, singular value decomposition (SVD) of the channel matrix is performed. This transforms the MIMO channel into parallel subchannels, but has a low overall diversity order. Hence, we propose X-Codes which achieve a higher diversity order by pairing the subchannels, prior to SVD preceding. In particular, each pair of information symbols is encoded by a fixed 2 × 2 real rotation matrix. X-Codes can be decoded using nr very low complexity two-dimensional real sphere decoders. Error probability analysis for X-Codes enables us to choose the optimal pairing and the optimal rotation angle for each pair. Finally, we show that our new scheme outperforms other low complexity precoding schemes.
Resumo:
Synthesis of short peptides using propargyloxycarbonyl amino acid chlorides as effective coupling reagents and polymer supported tetrathiomolybdate as an efficient deblocking agent are reported.
Resumo:
We prove a lower bound of Omega(1/epsilon (m + log(d - a)) where a = [log(m) (1/4epsilon)] for the hitting set size for combinatorial rectangles of volume at least epsilon in [m](d) space, for epsilon is an element of [m(-(d-2)), 2/9] and d > 2. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Rotational dynamics of polarity sensitive fluorescent dyes (ANS and DPH) in a nonpolymertic aqueous gel derived from tripodal cholamide I was studied using ultrafast time-resolved fluorescence technique. Results were compared with that of naturally occurring di- and trihydroxy bile salts. ANS in the gel showed two rotational correlation time (phi) components, 13.2 ns (bound to the hydrophobic region of the gel) and 1.0 ns (free aqueous ANS), whereas DPH showed only one component (4.8 ns). In the sol state, faster rotational motion was observed, both for ANS and DPH. Our data revealed that dyes get encapsulated more tightly in the gel network when compared to the micellar aggregates. ANS has more restrained rotation compared to DPH. This was attributed to the interaction of the sulfonate group of ANS with water molecules and hydrophilic parts of the gelator molecule. No restricted rotation was observed for DPH in the gel state unlike when it is in the gel phase of lipid bilayer.
Resumo:
Very Long Instruction Word (VLIW) architectures exploit instruction level parallelism (ILP) with the help of the compiler to achieve higher instruction throughput with minimal hardware. However, control and data dependencies between operations limit the available ILP, which not only hinders the scalability of VLIW architectures, but also result in code size expansion. Although speculation and predicated execution mitigate ILP limitations due to control dependencies to a certain extent, they increase hardware cost and exacerbate code size expansion. Simultaneous multistreaming (SMS) can significantly improve operation throughput by allowing interleaved execution of operations from multiple instruction streams. In this paper we study SMS for VLIW architectures and quantify the benefits associated with it using a case study of the MPEG-2 video decoder. We also propose the notion of virtual resources for VLIW architectures, which decouple architectural resources (resources exposed to the compiler) from the microarchitectural resources, to limit code size expansion. Our results for a VLIW architecture demonstrate that: (1) SMS delivers much higher throughput than that achieved by speculation and predicated execution, (2) the increase in performance due to the addition of speculation and predicated execution support over SMS averages around 12%. The minor increase in performance might not warrant the additional hardware complexity involved, and (3) the notion of virtual resources is very effective in reducing no-operations (NOPs) and consequently reduce code size with little or no impact on performance.
Resumo:
This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multipleoutput (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation.Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2 × 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations,compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for nonrectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.
Resumo:
We develop a Gaussian mixture model (GMM) based vector quantization (VQ) method for coding wideband speech line spectrum frequency (LSF) parameters at low complexity. The PDF of LSF source vector is modeled using the Gaussian mixture (GM) density with higher number of uncorrelated Gaussian mixtures and an optimum scalar quantizer (SQ) is designed for each Gaussian mixture. The reduction of quantization complexity is achieved using the relevant subset of available optimum SQs. For an input vector, the subset of quantizers is chosen using nearest neighbor criteria. The developed method is compared with the recent VQ methods and shown to provide high quality rate-distortion (R/D) performance at lower complexity. In addition, the developed method also provides the advantages of bitrate scalability and rate-independent complexity.
Resumo:
We have developed two reduced complexity bit-allocation algorithms for MP3/AAC based audio encoding, which can be useful at low bit-rates. One algorithm derives optimum bit-allocation using constrained optimization of weighted noise-to-mask ratio and the second algorithm uses decoupled iterations for distortion control and rate control, with convergence criteria. MUSHRA based evaluation indicated that the new algorithm would be comparable to AAC but requiring only about 1/10 th the complexity.
Resumo:
In this paper we are concerned with finding the maximum throughput that a mobile ad hoc network can support. Even when nodes are stationary, the problem of determining the capacity region has long been known to be NP-hard. Mobility introduces an additional dimension of complexity because nodes now also have to decide when they should initiate route discovery. Since route discovery involves communication and computation overhead, it should not be invoked very often. On the other hand, mobility implies that routes are bound to become stale resulting in sub-optimal performance if routes are not updated. We attempt to gain some understanding of these effects by considering a simple one-dimensional network model. The simplicity of our model allows us to use stochastic dynamic programming (SDP) to find the maximum possible network throughput with ideal routing and medium access control (MAC) scheduling. Using the optimal value as a benchmark, we also propose and evaluate the performance of a simple threshold-based heuristic. Unlike the optimal policy which requires considerable state information, the heuristic is very simple to implement and is not overly sensitive to the threshold value used. We find empirical conditions for our heuristic to be near-optimal as well as network scenarios when our simple heuristic does not perform very well. We provide extensive numerical and simulation results for different parameter settings of our model.
Resumo:
This paper addresses a search problem with multiple limited capability search agents in a partially connected dynamical networked environment under different information structures. A self assessment-based decision-making scheme for multiple agents is proposed that uses a modified negotiation scheme with low communication overheads. The scheme has attractive features of fast decision-making and scalability to large number of agents without increasing the complexity of the algorithm. Two models of the self assessment schemes are developed to study the effect of increase in information exchange during decision-making. Some analytical results on the maximum number of self assessment cycles, effect of increasing communication range, completeness of the algorithm, lower bound and upper bound on the search time are also obtained. The performance of the various self assessment schemes in terms of total uncertainty reduction in the search region, using different information structures is studied. It is shown that the communication requirement for self assessment scheme is almost half of the negotiation schemes and its performance is close to the optimal solution. Comparisons with different sequential search schemes are also carried out. Note to Practitioners-In the futuristic military and civilian applications such as search and rescue, surveillance, patrol, oil spill, etc., a swarm of UAVs can be deployed to carry out the mission for information collection. These UAVs have limited sensor and communication ranges. In order to enhance the performance of the mission and to complete the mission quickly, cooperation between UAVs is important. Designing cooperative search strategies for multiple UAVs with these constraints is a difficult task. Apart from this, another requirement in the hostile territory is to minimize communication while making decisions. This adds further complexity to the decision-making algorithms. In this paper, a self-assessment-based decision-making scheme, for multiple UAVs performing a search mission, is proposed. The agents make their decisions based on the information acquired through their sensors and by cooperation with neighbors. The complexity of the decision-making scheme is very low. It can arrive at decisions fast with low communication overheads, while accommodating various information structures used for increasing the fidelity of the uncertainty maps. Theoretical results proving completeness of the algorithm and the lower and upper bounds on the search time are also provided.