972 resultados para REYNOLDS-NUMBER
Resumo:
Small circular, square, and thin-strip cross-sectional elements are used to suppress vortex shedding from a square cylinder at Reynolds numbers in the range of 1.12 x 10(4)-1.02 x 10(5). The axes of the element and cylinder are parallel. The element's size, position, and angle of attack are varied. Measurements of the fluctuating surface pressures and wake velocities, together with smoke flow visualization, show that vortex shedding from both sides of the cylinder is suppressed and the mean drag and fluctuating lift on the cylinder is reduced if the element is installed in an effective zone downstream of the cylinder. The effective zone of the circular element is shown to be much smaller than those of the other elements. The effects of Reynolds number and blockage ratio are investigated. A phenomenon of monoside vortex shedding is observed. The role of the element's bluffness is investigated and the suppression mechanism is discussed.
Resumo:
The flow past a square-section cylinder with a geometric disturbance is investigated by numerical simulations. The extra terms, due to the introduction of mapping transformation simulating the effect of disturbance into the transformed Navier-Stokes equations, are correctly derived, and the incorrect ones in the previous literature are pointed out and analyzed. Furthermore, the relationship between the vorticity, especially on the cylinder surface, and the disturbance is derived and explained theoretically. The computations are performed at two Reynolds numbers of 100 and 180 and three amplitudes of waviness of 0.006, 0.025 and 0.167 with another aim to explore the effects of different Reynolds numbers and disturbance on the vortex dynamics in the wake and forces on the body. Numerical results have shown that, at the mild waviness of 0.025, the Karman vortex shedding is suppressed completely for Re = 100, while the forced vortex dislocation is appeared in the near wake at the Reynolds number of 180. The drag reduction is up to 21.6% at Re = 100 and 25.7% at Re = 180 for the high waviness of 0.167 compared with the non-wavy cylinder. The lift and the Strouhal number varied with different Reynolds numbers and the wave steepness are also obtained.
Resumo:
A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.
Resumo:
A second-order dynamic model based on the general relation between the subgrid-scale stress and the velocity gradient tensors was proposed. A priori test of the second-order model was made using moderate resolution direct numerical simulation date at high Reynolds number ( Taylor microscale Reynolds number R-lambda = 102 similar to 216) for homogeneous, isotropic forced flow, decaying flow, and homogeneous rotating flow. Numerical testing shows that the second-order dynamic model significantly improves the correlation coefficient when compared to the first-order dynamic models.
Resumo:
The features of the wake behind a uniform circular cylinder at Re = 200, which is just beyond the critical Reynolds number of 3-D transition, are investigated in detail by direct numerical simulations by solving 3-D incompressible Navier-Stokes equations using mixed spectral-spectral-element method. The high-order splitting algorithm based on the mixed stiffly stable scheme is employed in the time discretization. Due to the nonlinear evolution of the secondary instability of the wake, the spanwise modes with different wavelengths emerge. The spanwise characteristic length determines the transition features and global properties of the wake. The existence of the spanwise phase difference of the primary vortices shedding is confirmed by Fourier analysis of the time series of the spanwise vorticity and attributed. to the dominant spanwise mode. The spatial energy distributions of various modes and the velocity profiles in the near wake are obtained. The numerical results indicate that the near wake is in 3-D quasi-periodic laminar state with transitional behaviors at this supercritical Reynolds number.
Resumo:
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it is found that the streamwise vortices evolve into a new type of mode - "dual vortex pair mode" downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency f(m) in addition to the vortex shedding frequency f(s) is identified. Frequency coupling between f(m) and f(s) occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described.
Resumo:
Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Results show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds number Re and rotation parameter a, is built by a kinematic analysis of the steady flow fields.
Resumo:
Transition waves and interactions between two kinds of instability-vortex shedding and transition wave in the near wake of a circular cylinder in the Reynolds number range 3 000-10 000 are studied by a domain decomposition hybrid numerical method. Based on high resolution power spectral analyses for velocity new results on the Reynolds-number dependence of the transition wave frequency, i.e. f(t)/f(s) similar to Re-0.87 are obtained. The new predictions are in good agreement with the experimental results of Wei and Smith but different from Braza's prediction and some early experimental results f(t)/f(s) similar to Re-0.5 given by Bloor et nl. The multi-interactions between two kinds of vortex are clearly visualized numerically. The strong nonlinear interactions between the two independent frequencies (f(t), f(s)) leading to spectra broadening to form the coupling mf(s) +/- nf(t) are predicted and analyzed numerically, and the characteristics of the transition are described. Longitudinal variations of the transition wave and its coupling are reported. Detailed mechanism of the flow transition in the near wake before occurrence of the three-dimensional evolution is provided.
Resumo:
The flow field with vortex breakdown in wide spherical gaps was studied numerically by a finite difference method under the axisymmetric condition. The result shows that the flow bifurcates to periodic motion as the Reynolds number or the eccentricity of the spheres increases. (C) 1997 American Institute of Physics.
Resumo:
The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
Resumo:
A low-dimensional Galerkin method, initiated by Noack and Eckelmann [Physica D 56, 151 (1992)], for the prediction of the flow field around a stationary two-dimensional circular cylinder in a uniform stream at low Reynolds number is generalized to the case of a rotating and translating cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter plane of Reynolds number Re and rotating parameter alpha. Our results show that rotation may delay the onset of vortex street and decrease the vortex-shedding frequency. (C) 1996 American Institute of Physics.
Resumo:
A new numerical method for solving the axisymmetric unsteady incompressible Navier-Stokes equations using vorticity-velocity variables and a staggered grid is presented. The solution is advanced in time with an explicit two-stage Runge-Kutta method. At each stage a vector Poisson equation for velocity is solved. Some important aspects of staggering of the variable location, divergence-free correction to the velocity held by means of a suitably chosen scalar potential and numerical treatment of the vorticity boundary condition are examined. The axisymmetric spherical Couette flow between two concentric differentially rotating spheres is computed as an initial value problem. Comparison of the computational results using a staggered grid with those using a non-staggered grid shows that the staggered grid is superior to the non-staggered grid. The computed scenario of the transition from zero-vortex to two-vortex flow at moderate Reynolds number agrees with that simulated using a pseudospectral method, thus validating the temporal accuracy of our method.
Resumo:
The flow structure around an NACA 0012 aerofoil oscillating in pitch around the quarter-chord is numerically investigated by solving the two-dimensional compressible N-S equations using a special matrix-splitting scheme. This scheme is of second-order accuracy in time and space and is computationally more efficient than the conventional flux-splitting scheme. A 'rigid' C-grid with 149 x 51 points is used for the computation of unsteady flow. The freestream Mach number varies from 0.2 to 0.6 and the Reynolds number from 5000 to 20,000. The reduced frequency equals 0.25-0.5. The basic flow structure of dynamic stall is described and the Reynolds number effect on dynamic stall is briefly discussed. The influence of the compressibility on dynamic stall is analysed in detail. Numerical results show that there is a significant influence of the compressibility on the formation and convection of the dynamic stall vortex. There is a certain influence of the Reynolds number on the flow structure. The average convection velocity of the dynamic stall vortex is approximately 0.348 times the freestream velocity.