993 resultados para RENAL TUBULAR CELLS
Resumo:
Carraro-Lacroix LR, Malnic G, Girardi AC. Regulation of Na(+)/H(+) exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells. Am J Physiol Renal Physiol 297: F1647-F1655, 2009. First published September 23, 2009; doi:10.1152/ajprenal.00082.2009.-The gut incretin hormone glucagon-like peptide 1 (GLP-1) is released in response to ingested nutrients and enhances insulin secretion. In addition to its insulinotropic properties, GLP-1 has been shown to have natriuretic actions paralleled by a diminished proton secretion. We therefore studied the role of the GLP-1 receptor agonist exendin-4 in modulating the activity of Na(+)/H(+) exchanger NHE3 in LLC-PK(1) cells. We found that NHE3-mediated Na(+)-dependent intracellular pH (pH(i)) recovery decreased similar to 50% after 30-min treatment with 1 nM exendin-4. Pharmacological inhibitors and cAMP analogs that selectively activate protein kinase A (PKA) or the exchange protein directly activated by cAMP (EPAC) demonstrated that regulation of NHE3 activity by exendin-4 requires activation of both cAMP downstream effectors. This conclusion was based on the following observations: 1) the PKA antagonist H-89 completely prevented the effect of the PKA activator but only partially blocked the exendin-4-induced NHE3 inhibition; 2) the MEK1/2 inhibitor U-0126 abolished the effect of the EPAC activator but only diminished the exendin-4-induced NHE3 inhibition; 3) combination of H-89 and U-0126 fully prevented the effect of exendin-4 on NHE3; 4) no additive effect in the inhibition of NHE3 activity was observed when exendin-4, PKA, and EPAC activators were used together. Mechanistically, the inhibitory effect of exendin-4 on pHi recovery was associated with an increase of NHE3 phosphorylation. Conversely, this inhibition took place without changes in the surface expression of the transporter. We conclude that GLP-1 receptor agonists modulate sodium homeostasis in the kidney, most likely by affecting NHE3 activity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. Hyperglycemia is associated with a decreased tolerance to ischemia and an increased severity of renal ischemia reperfusion (I/R) injury. It has been suggested that erythropoietin (EPO) attenuates this effect in normoglycemic animals. This study sought to examine the effects of EPO on treatment renal I/R injury (IRI) in transiently hyperglycemic rats.Material and Methods. Twenty-eight male Wister rats anesthetized with isoflurane received glucose (2.5 g.kg(-1) intraperitoneally) before right nephrectomy. They were randomly assigned to four groups: sham operation (S); IRI (ISO); IRI+EPO, (600 UI kg(-1) low-dose EPO [EL]); and IRI+EPO 5000 UI kg(-1) (high-dose EPO [EH]). IRI was induced by a 25-minute period of left renal ischemia followed by reperfusion for 24 hours. Serum Creatinine and glucose levels were measure at baseline (M1), immediately after the ischemic period (M2), and at 24 hours after reperfusion (M3). After sacrificing the animals, left kidney specimens were submitted for histological analysis including flow cytometry to estimate tubular necrosis and the percentages of apoptotic, dead or intact cells.Results. Scr in the ISO group was significantly higher at M3 than among the other groups. Percentages of early apoptotic cells in ISO group were significantly higher than the other groups. Percentages of late apoptotic cells in S and ISO groups were significantly greater than EL and EH groups. However, no significant intergroup differences were observed regarding the incidence of tubular necrosis.Conclusions. Our results suggested that, although not preventing the occurrence of tubular necrosis, EPO attenuated apoptosis and glomerular functional impairment among transiently hyperglycemic rats undergoing an ischemia/reperfusion insult.
Resumo:
O objetivo deste estudo foi avaliar os possíveis efeitos da tetraciclina administrada a ratas, no décimo dia de gestação, no desenvolvimento hepático e renal de seus filhotes. O fígado mostrou vacuolização, necrose, inflamação e dilatação sinusoidal mais evidente em recém-nascidos. Mitoses, aumento precoce da população de células de Kupffer e hipertrofia de hepatócitos com maior síntese de glicogênio estavam presentes no décimo e vigésimo dias de vida. O rim mostrou vacuolização tubular e necrose discretas, mais evidentes nos recém-nascidos, assim como sinais de regeneração tubular no décimo e vigésimo dias. Esses resultados sugeriram que os órgãos estudados sofreram alterações morfológicas transitórias durante o desenvolvimento, mas apresentaram sinais de regeneração ao longo dos primeiros dias de vida.
Resumo:
Immunohistochemical studies on renal biopsies from eight patients with various types of glomerulonephritis showed that the interstitial foam cells belonged to the monocyte-macrophage lineage. There was a strong association between hypercholesterolaemia and the presence of renal interstitial foam cells.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - ICT
Resumo:
With the improvement in quality of life of animals, it is increasingly frequent clinical care of elderly patients, which present renal disorders, including chronic renal failure. Recent studies report the use of stem cells to treat renal failure, which would improve the levels of urea and creatinine, and in renal ultrasound evaluation. With the present work, the idea is to report a case of ultrasonographic evaluation in a patient with chronic renal failure, liver disease and splenic nodule, which underwent stem cell therapy, where there was an improvement in the sonographic evaluation of part of the liver.
Resumo:
Nitric oxide (NO) is a free radical gas, inorganic, which has seven electrons of nitrogen and oxygen eight, possessing an unpaired electron. This radical is produced from L-arginine by a reaction mediated by the enzyme NO synthase. NO it is about a radical of who acts abundant on a variety of biological processes, particularly when produced by endothelial cells plays a significant role in cardiovascular control, as a modulator of peripheral vascular resistance and platelet aggregation. This free radical has also a neurotransmitter and mediator of the immune system. NO kidney function has been considered in many physiological functions such as: (a) regulation of hemodynamics and glomerular function tubuloglomerular, (b) participation in pressure natriuresis (c) maintaining medullar perfusion (d) inhibiting sodium reabsorption tubular, and (e) acting as a modulator of the activity of the sympathetic nervous system. Given these functions, the occurrence of its deficiency is associated with chronic kidney disease (CKD) in vasoconstriction and consequently glomerular hypertension, high blood pressure (HBP), proteinuria and progression of renal dysfunction. This work has the scope to describe the role of NO in renal physiology and pathophysiology of CKD.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Renal alterations caused by Bothrops venom and its compounds are studied to understand these effects and provide the best treatment. Previously, we studied the renal effect of the whole venom of Bothrops marajoensis and its phospholipase A2 (PLA2), but these effects could not to be attributed to PLA2. To continue the study, we report in this short communication the effects of l-amino acid oxidase from B. marajoensis venom (LAAOBm) on renal function parameter alterations observed in the same model of isolated perfused kidney, as well as the cytotoxic effect on renal cells. LAAOBm caused a decrease in PP, RVR, UF, GFR, %TNa(+) and %TCl(-), very similar to the effects of whole venom using the same model. We also demonstrated its cytotoxicity in MDCK cells with IC50 of 2.5 μg/mL and late apoptotic involvement demonstrated by flow cytometry assays. In conclusion, we suggested that LAAOBm is a nephrotoxic compound of B. marajoensis venom.
Resumo:
Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism, suggesting a pleiotropic effect for Hemin. These findings improve the biological understanding of how the kidney behaves after IRI. They also illustrate some possible underlying molecular mechanisms involved in kidney protection observed with IPC or Hemin treatment maneuvers.
Resumo:
Adipose tissue-derived stem cells (ASCs) are an attractive source of stem cells with regenerative properties that are similar to those of bone marrow stem cells. Here, we analyze the role of ASCs in reducing the progression of kidney fibrosis. Progressive renal fibrosis was achieved by unilateral clamping of the renal pedicle in mice for 1 h; after that, the kidney was reperfused immediately. Four hours after the surgery, 2 x 10(5) ASCs were intraperitoneally administered, and mice were followed for 24 h posttreatment and then at some other time interval for the next 6 weeks. Also, animals were treated with 2 x 10(5) ASCs at 6 weeks after reperfusion and sacrificed 4 weeks later to study their effect when interstitial fibrosis is already present. At 24 h after reperfusion, ASC-treated animals showed reduced renal dysfunction and enhanced regenerative tubular processes. Renal mRNA expression of IL-6 and TNF was decreased in ASC-treated animals, whereas IL-4. IL-10, and HO-1 expression increased despite a lack of ASCs in the kidneys as determined by SRY analysis. As expected, untreated kidneys shrank at 6 weeks, whereas the kidneys of ASC-treated animals remained normal in size, showed less collagen deposition, and decreased staining for FSP-1, type I collagen, and Hypoxyprobe. The renal protection seen in ASC-treated animals was followed by reduced serum levels of TNF-alpha, KC, RANTES, and IL-1 alpha. Surprisingly, treatment with ASCs at 6 weeks, when animals already showed installed fibrosis, demonstrated amelioration of functional parameters, with less tissue fibrosis observed and reduced mRNA expression of type I collagen and vimentin. ASC therapy can improve functional parameters and reduce progression of renal fibrosis at early and later times after injury, mostly due to early modulation of the inflammatory response and to less hypoxia, thereby reducing the epithelial-mesenchymal transition.