943 resultados para REMOVAL TORQUE
Resumo:
The management of municipal solid waste (MSW), particularly the role of incineration, is currently a subject of public debate. Incineration shows to be a good alternative of reducing the volume of waste and eliminating certain infectious components. Moreover, Municipal Waste Incinerators (MWI), are reported to be highly hygienic and apart from that MWIs are immediately effective in terms of transport (incinerators can be built close to the waste sources) and incineration's nature. Nevertheless, the emissions of many hazardous substances make the Municipal Waste Incineration (MWI) plants to be unpopular. Metals (especially lead, manganese, cadmium, chromium and mercury) are concentrated in fly and bottom ashes. Furthermore, incomplete combustion produces a wide variety of potentially hazardous organic compounds, such as aldehydes, polycyclic aromatic hydrocarbons (PAH), chlorinated hydrocarbons including polychlorinated dibenzodioxins (PCDD) and dibenzofurans (PCDF), and even acid gases, including NOx. Many of these hazardous substances are carcinogenic and some have direct systemic toxicity.
Resumo:
[EN] This paper describes, for the first time, the use of alginate hydrogels as miniaturised microvalves within microfluidic devices. These biocompatible and biodegradable microvalves are generated in situ and on demand, allowing for microfluidic flow control. The microfluidic devices were fabricated using an origami inspired technique of folding several layers of cyclic olefin polymer followed by thermocompression bonding. The hydrogels can be dehydrated at mild temperatures, 37◦C, to slightly open the microvalve and chemically erased using an ethylenediaminetetraacetic acid disodium salt (EDTA) solution, to completely open the channel, ensuring the reusability of the whole device and removal of damaged or defective valves for subsequent regeneration.
Resumo:
Mats (biomasses) of macroalgae, i.e. Ulva spp., Enteromorpha spp., Graciolaria spp., and Cladophora spp., have increased markedly over the past 50 years, and they cover much larger areas than they once did in many estuaries of the world. The increases are due to large inputs of pollutants, mainly nitrates. During the warm months, the mats lie loosely on shallow sand and mud flats mostly along shorelines. Ulva lactuca overwinters as buds attached to shells and stones, and in the spring it grows as thalli (leaf fronds). Mats eventually form that are several thalli thick. Few macroinvertebrates grow on the upper surfaces of their thalli due to toxins they produce, and few can survive beneath them. The fish, crabs, and wading birds that once used the flats to feed on the macroinvertebrates are denied these feeding grounds. The mats also grow over and kill mollusks and eelgrass, Zostera marina. An experiment was undertaken which showed that two removals of U. lactuca in a summer from a shallow flat in an estuarine cove maintained the bottom almost free of it.
Resumo:
A worker drilling in Colton Beck,, North West England, UK, trying to make it more accessible for fish passing in 1953. This photo is part of a Photo Album that includes pictures from 1935 to 1954.
Resumo:
Of all laser-based processes, laser machining has received little attention compared with others such as cutting, welding, heat treatment and cleaning. The reasons for this are unclear, although much can be gained from the development of an effcient laser machining process capable of processing diffcult materials such as high-performance steels and aerospace alloys. Existing laser machining processes selectively remove material by melt shearing and evaporation. Removing material by melting and evaporation leads to very low wall plug effciencies, and the process has difficulty competing with conventional mechanical removal methods. Adopting a laser machining solution for some materials offers the best prospects of effcient manufacturing operations. This paper presents a new laser machining process that relies on melt shear removal provided by a vertical high-speed gas vortex. Experimental and theoretical studies of a simple machining geometry have identifed a stable vortex regime that can be used to remove laser-generated melt effectively. The resultant combination of laser and vortex is employed in machining trials on 43A carbon steel. Results have shown that laser slot machining can be performed in a stable regime at speeds up to 150mm/min with slot depths of 4mm at an incident CO2 laser power level of 600 W. Slot forming mechanisms and process variables are discussed for the case of steel. Methods of bulk machining through multislot machining strategies are also presented.