974 resultados para Quantum chemical calculations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the main features of Raman spectroscopy, one of the first choice methods in the study of polymorphism in pharmaceuticals, are presented taking chlorpropamide as a case of study. The antidiabetic drug chlorpropamide (1-[4-chlorobenzenesulphonyl]-3-propyl urea), which belongs to the sulfonylurea class, is known to exhibit, at least, six polymorphic phases. These forms are characterized not only by variations in their molecular packing but also in their molecular conformation. In this study, the polymorphism of chlorpropamide is discussed on the basis of Raman scattering measurements and quantum mechanical calculations. The main spectroscopic features that fingerprint the crystalline forms are correlated with the corresponding crystalline structures. Using a theoretical approach on the energy dependence of the conformers, simulated molecular torsion angles are plotted versus the formation energy, which provides a satisfactory agreement between the torsion angles at the energy minima and the experimental values observed in the different solid forms of chlorpropamide. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

RATIONALE: Oxazolines have attracted the attention of researchers worldwide due to their versatility as carboxylic acid protecting groups, chiral auxiliaries, and ligands for asymmetric catalysis. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of five 2-oxazoline derivatives has been conducted, in order to understand the influence of the side chain on the gas-phase dissociation of these protonated compounds under collision-induced dissociation (CID) conditions. METHODS: Mass spectrometric analyses were conducted in a quadrupole time-of-flight (Q-TOF) spectrometer fitted with electrospray ionization source. Protonation sites have been proposed on the basis of the gas-phase basicity, proton affinity, atomic charges, and a molecular electrostatic potential map obtained on the basis of the quantum chemistry calculations at the B3LYP/6-31 + G(d, p) and G2(MP2) levels. RESULTS: Analysis of the atomic charges, gas-phase basicity and proton affinities values indicates that the nitrogen atom is a possible proton acceptor site. On the basis of these results, two main fragmentation processes have been suggested: one taking place via neutral elimination of the oxazoline moiety (99 u) and another occurring by sequential elimination of neutral fragments with 72 u and 27 u. These processes should lead to formation of R+. CONCLUSIONS: The ESI-MS/MS experiments have shown that the side chain could affect the dissociation mechanism of protonated 2-oxazoline derivatives. For the compound that exhibits a hydroxyl at the lateral chain, water loss has been suggested to happen through an E2-type elimination, in an exothermic step. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well known that crystals of topaz from the Eastern Brazilian Pegmatite Province may turn blue by the irradiation with Co-60 gamma rays followed by heat treatment. Also, it is known that the sensation of color changes with the thickness of these crystals. The dependence of the color, given by 1931 CIE chromaticity coordinates, with the thickness of the crystal was analyzed. The absorbance used in the calculation of these coordinates was given by the sum of Gaussian lines. The parameters of these lines were determined through the decomposition of the optical absorption spectra in the ultraviolet and visible regions. The decomposition revealed several lines, whose assignment was made considering studies in spodumene and beryl crystals and highly accurate quantum mechanical calculations. The transmittance becomes very narrow with increasing thickness, and the CIE chromaticity coordinates converge to the borderline of the CIE Chromaticity Diagram at the wavelength of maximum transmittance. Furthermore, the purity of color increases with increasing thickness, and the dominant wavelength reaches the wavelength of maximum transmittance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neutral-pion pi(0) spectra were measured at midrapidity (vertical bar y vertical bar < 0.35) in Au + Au collisions at root s(NN) = 39 and 62.4 GeV and compared with earlier measurements at 200 GeV in a transverse-momentum range of 1 < p(T) < 10 GeV/c. The high-p(T) tail is well described by a power law in all cases, and the powers decrease significantly with decreasing center-of-mass energy. The change of powers is very similar to that observed in the corresponding spectra for p + p collisions. The nuclear modification factors (RAA) show significant suppression, with a distinct energy, centrality, and p(T) dependence. Above p(T) = 7 GeV/c, R-AA is similar for root sNN = 62.4 and 200 GeV at all centralities. Perturbative-quantum-chromodynamics calculations that describe R-AA well at 200 GeV fail to describe the 39 GeV data, raising the possibility that, for the same p(T) region, the relative importance of initial-state effects and soft processes increases at lower energies. The p(T) range where pi(0) spectra in central Au + Au collisions have the same power as in p + p collisions is approximate to 5 and 7 GeV/c for root sNN = 200 and 62.4 GeV, respectively. For the root sNN = 39 GeV data, it is not clear whether such a region is reached, and the x(T) dependence of the x(T)-scaling power-law exponent is very different from that observed in the root sNN = 62 and 200 GeV data, providing further evidence that initial-state effects and soft processes mask the in-medium suppression of hardscattered partons to higher p(T) as the collision energy decreases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An antioxidant structure-activity study is carried out in this work with ten flavonoid compounds using quantum chemistry calculations with the functional of density theory method. According to the geometry obtained by using the B3LYP/6-31G(d) method, the HOMO, ionization potential, stabilization energies, and spin density distribution showed that the flavonol is the more antioxidant nucleus. The spin density contribution is determinant for the stability of the free radical. The number of resonance structures is related to the pi-type electron system. 3-hydroxyflavone is the basic antioxidant structure for the simplified flavonoids studied here. The electron abstraction is more favored in the molecules where ether group and 3-hydroxyl are present, nonetheless 2,3-double bond and carbonyl moiety are facultative.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The differential cross section for the production of direct photons in p + p collisions at root s = 200 GeV at midrapidity was measured in the PHENIX detector at the Relativistic Heavy Ion Collider. Inclusive direct photons were measured in the transverse momentum range from 5: 5-25 GeV/c, extending the range beyond previous measurements. Event structure was studied with an isolation criterion. Next-to-leading-order perturbative-quantum-chromodynamics calculations give a good description of the spectrum. When the cross section is expressed versus x(T), the PHENIX data are seen to be in agreement with measurements from other experiments at different center-of-mass energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular modeling is growing as a research tool in Chemical Engineering studies, as can be seen by a simple research on the latest publications in the field. Molecular investigations retrieve information on properties often accessible only by expensive and time-consuming experimental techniques, such as those involved in the study of radical-based chain reactions. In this work, different quantum chemical techniques were used to study phenol oxidation by hydroxyl radicals in Advanced Oxidation Processes used for wastewater treatment. The results obtained by applying a DFT-based model showed good agreement with experimental values available, as well as qualitative insights into the mechanism of the overall reaction chain. Solvation models were also tried, but were found to be limited for this reaction system within the considered theoretical level without further parameterization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Molecular Dynamics simulations and Quantum Mechanical calculations, we study the behavior of molecules with biophysical and pharmacological interest in solution and in phospholipid bilayer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quantum chemical investigations presented in this thesis use hybrid density functional theory to shed light on the catalytic mechanisms of mononuclear non-heme iron oxygenases, accommodating a ferrous ion in their active sites. More specifically, the dioxygen activation process and the subsequent oxidative reactions in the following enzymes were studied: tetrahydrobiopterin-dependent hydroxylases, naphthalene 1,2-dioxygenase and α-ketoglutarate-dependent enzymes. In light of many experimental efforts devoted to the functional mimics of non-heme iron oxygenases, the reactivity of functional analogues was also examined. The computed energetics and the available experimental data served to assess the feasibility of the reaction mechanisms investigated. Dioxygen activation in tetrahydrobiopterin- and α-ketoglutarate-dependent enzymes were found to involve a high-valent iron-oxo species, which was then capable of substrate hydroxylation. In the case of naphthalene 1,2-dioxygenase, the reactivity of an iron(III)-hydroxperoxo species toward the substrate was investigated and compared to the biomimetic counterpart.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Es wurden neue funktionalisierte Carbazole und anellierte Benzo[a]carbazole als potentielle pharmakologische Therapeutika durch 1,6-pi-Elektrocyclisierung auf photo-chemischem, thermischem und sonochemischem Weg synthetisiert und die Synthesemethoden der 1,6-pi-Elektrocyclisierung sowie der 2,3-Divinylindole und der 2-Aryl-3-vinylindole als entsprechende Ausgangsprodukte validiert und evaluiert. Es gelang weder das nach den Woodward-Hoffmann-Regeln erwartete primäre Cyclisierungsprodukt mit Indolochinodimethanstruktur noch die Existenz des in einer photochemischen Abfangreaktion daraus resultierenden Cycloprodukts NMR-spektroskopisch nachzuweisen, um den stereochemischen Verlauf der Cyclisierung vorherzusagen. Ergebnisse der quantenchemischen Berechnungen der Eduktmoleküle (AO-Koeffizienten der MO's, HOMO/LUMO-Energien) sowie der Übergangszustandsgeometrien der Cyclisierungen decken sich mit den experimentellen Daten. Divinyl- und 2-Aryl-3-vinylindole sind als Systeme mit Hexatriensymmetrie aufzufassen, deren Cyclisierungsverhalten sich mit den Woodward-Hoffmann-Regeln beschreiben läßt. Im Vergleich der verschiedenen 1,6-pi-Elektrocyclisierungsmethoden zeigte sich, daß die photochemische Variante eine elegante Synthesemethode darstellt, um funktionalisierte Carbazole und Benzo[a]carbazole mit unterschiedlichen pharmakologischen Aktivitäten unter schonenden Reaktionsbedingungen mit den vergleichbar höchsten Ausbeuten zu erhalten. Demgegenüber lieferten die Ultraschallreaktionen keine nachweisbaren Cyclisierungsprodukte. Die thermische Cyclisierung führte zur Gruppe der 1,2-Dihydrocarbazole. Sie bildeten sich in einer Folgereaktion durch [1,5s]-H-Verschiebung aus dem primär entstandenen Woodward-Hoffmann-Cyclisierungsprodukt. In abschließenden DNA-Bindestudien mit verschiedenen Testsystemen zeigte keine der synthetisierten Testsubstanzen DNA-Bindungsaktivität.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The central aim of this thesis work is the application and further development of a hybrid quantum mechanical/molecular mechanics (QM/MM) based approach to compute spectroscopic properties of molecules in complex chemical environments from electronic structure theory. In the framework of this thesis, an existing density functional theory implementation of the QM/MM approach is first used to calculate the nuclear magnetic resonance (NMR) solvent shifts of an adenine molecule in aqueous solution. The findings show that the aqueous solvation with its strongly fluctuating hydrogen bond network leads to specific changes in the NMR resonance lines. Besides the absolute values, also the ordering of the NMR lines changes under the influence of the solvating water molecules. Without the QM/MM scheme, a quantum chemical calculation could have led to an incorrect assignment of these lines. The second part of this thesis describes a methodological improvement of the QM/MM method that is designed for cases in which a covalent chemical bond crosses the QM/MM boundary. The development consists in an automatized protocol to optimize a so-called capping potential that saturates the electronic subsystem in the QM region. The optimization scheme is capable of tuning the parameters in such a way that the deviations of the electronic orbitals between the regular and the truncated (and "capped") molecule are minimized. This in turn results in a considerable improvement of the structural and spectroscopic parameters when computed with the new optimized capping potential within the QM/MM technique. This optimization scheme is applied and benchmarked on the example of truncated carbon-carbon bonds in a set of small test molecules. It turns out that the optimized capping potentials yield an excellent agreement of NMR chemical shifts and protonation energies with respect to the corresponding full molecules. These results are very promising, so that the application to larger biological complexes will significantly improve the reliability of the prediction of the related spectroscopic properties.