995 resultados para Pt film impurities
Resumo:
Despite the predictions, the true potential of Nb2O5 for electrochromic applications has yet to be fully realized. In this work, three-dimensional (3D) compact and well-ordered nanoporous Nb2O5 films are synthesized by the electrochemical anodization of niobium thin films. These films are formed using RF sputtering and then anodized in an electrolyte containing ethylene glycol, ammonium fluoride, and small water content (4%) at 50 °C which resulted in low embedded impurities within the structure. Characterization of the anodized films shows that a highly crystalline orthorhombic phase of Nb2O5 is obtained after annealing at 450 °C. The 3D structure provides a template consisting of a large concentration of active sites for ion intercalation, while also ensuring low scattering directional paths for electrons. These features enhance the coloration efficiency to 47.0 cm2 C?1 (at 550 nm) for a 500 nm thick film upon Li+ ion intercalation. Additionally, the Nb2O5 electrochromic device shows a high bleached state transparency and large optical modulation.
Resumo:
Stereotactic radiosurgery treatments involve the delivery of very high doses for a small number of fractions. To date, there is limited data in terms of the skin dose for the very small field sizes used in these treatments. In this work, we determine relative surface doses for small size circular collimators as used in stereotactic radiosurgery treatments. Monte Carlo calculations were performed using the BEAMnrc code with a model of the Novalis 15 Trilogy linear accelerator and the BrainLab circular collimators. The surface doses were calculated at the ICRU skin dose depth of 70 m all using the 6 MV SRS x-ray beam. The calculated surface doses varied between 15 – 12% with decreasing values as the field size increased from 4 to 30 mm. In comparison, surface doses were measured using Gafchromic EBT3 film positioned at the surface of a Virtual Water phantom. The absolute agreement between calculated and measured surface doses was better than 2.5% which is well within the 20 uncertainties of the Monte Carlo calculations and the film measurements. Based on these results, we have shown that the Gafchromic EBT3 film is suitable for surface dose estimates in very small size fields as used in SRS.
Resumo:
When Dino De Laurentiis died in October 2010, most media outlets, including Australian based publications and services reported the news and most newspapers carried obituaries. Obituarists described Dino’s many failures in great detail; as film historian David Thomson wrote in The Guardian ‘there were enough bombs from Dino to level a large city’ (Thomson 2010). But Dino was also responsible in no small way for the building of new media cities in Rome, in North Carolina, and in Queensland. In this article, we draw on some of our research for that book to outline in more detail the importance of Dino De Laurentiis’s involvement to the Gold Coast studios and to film and television production in Queensland.
Resumo:
The work investigates cheating prevention in secret sharing. It is argued that cheating is immune against cheating if the cheaters gain no advantage over honest participants by submitting invalid shares to the combiner. This work addresses the case when shares and the secret are taken from GF(pt). Two models are considered. The first one examines the case when cheaters consistently submit always invalid shares. The second modeldeal s with cheaters who submit a mixture of valid and invalid shares. For these two models, cheating immunity is defined, properties of cheating immune secret sharing are investigated and their constructions are given.
Resumo:
The effect of plasmonoscillations, induced by pulsed laserirradiation, on the DC tunnel current between islands in a discontinuous thin goldfilm is studied. The tunnel current is found to be strongly enhanced by partial rectification of the plasmon-induced AC tunnel currents flowing between adjacent gold islands. The DC tunnel current enhancement is found to increase approximately linearly with the laser intensity and the applied DC bias voltage. The experimental data can be well described by an electron tunnelling model which takes the plasmon-induced AC voltage into account. Thermal heating seems not to contribute to the tunnel current enhancement.
Resumo:
We have demonstrated the nonlinear absorption at 532 nm wavelength in an Au semi-continuous film (SF) resulting from smearing of the Fermi distribution and diffusion of conduction electrons into the substrate. The Au SF was irradiated by a pulsed laser with 8 ns pulse width at 532 nm in near resonance with the interband transition of the Au. We determined the temperature increase in the SF for different intensities by electrical measurement. We calculated the temperature increase by using a 1D heat transport equation; comparing the results of the calculation with measured values for the temperature increase, revealed the nonlinear absorption in the Au SF. We employed this deviation from linear behaviour to determine the nonlinear absorption coefficient.
Resumo:
The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.
Resumo:
Recent research in the rapidly emerging field of plasmonics has shown the potential to significantly enhance light trapping inside thin-film solar cells by using metallic nanoparticles. In this article it is demonstrated the plasmon enhancement of optical absorption in amorphous silicon solar cells by using silver nanoparticles. Based on the analysis of the higher-order surface plasmon modes, it is shown how spectral positions of the surface plasmons affect the plasmonic enhancement of thin-film solar cells. By using the predictive 3D modeling, we investigate the effect of the higher-order modes on that enhancement. Finally, we suggest how to maximize the light trapping and optical absorption in the thin-film cell by optimizing the nanoparticle array parameters, which in turn can be used to fine tune the corresponding surface plasmon modes.
Resumo:
Strong electromagnetic field enhancement that occurs under conditions of the surface plasmon excitation in metallic nanoparticles deposited on a semiconductor surface is a very efficient and promising tool for increasing the optical absorption within semiconductor solar cells and, hence, their photocurrent response. The enhancement of the optical absorption in thin-film silicon solar cells via the excitation of localized surface plasmons in spherical silver nanoparticles is investigated. Using the effective medium model, the effect of the nanoparticle size and the surface coverage on that enhancement is analyzed. The optimum configuration and the nanoparticle parameters leading to the maximum enhancement in the optical absorption and the photocurrent response in a single p-n junction silicon cell are obtained. The effect of coupling between the silicon layer and the surface plasmon fields on the efficiency of the above enhancement is quantified as well.
Resumo:
Carbon microcoils (CMCs) have been coated with a Ni nanoparticle film using an electroless plating process. The morphology, the elemental composition and the phases in the coating layer, complex permittivity and permeability of the CMCs and Ni-coated CMCs were, respectively, investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microwave vector network analysis at room temperature. A homogeneous dispersion of Ni nanoparticles on the outer surface of the CMCs was obtained, with a mean particle size of ∼34.4 nm and the phosphorus content of about 8.5 wt%. When comparing the coated and uncoated CMC samples, the real (ε′) and imaginary (ε″) part of the complex permittivity as well as dielectric dissipation factor (tgδε = ε″/ε′) of the Ni-coated CMCs were much smaller, while the real (μ′) and imaginary (μ″) part of the complex permeability and the magnetic dissipation factor (t g σμ = μ″ / μ′) were larger. The enhanced microwave absorption of Ni-coated CMCs resulted from stronger dielectric and magnetic losses. In contrast, the microwave absorption of uncoated CMCs was mainly attributed to the dielectric rather than magnetic losses.
Resumo:
The propagation of Langmuir waves in nonisothermal plasmas contaminated by fine dust particles with variable charge is investigated for a self-consistent closed system. Dust charge relaxation, ionization, recombination, and collisional dissipation are taken into account. It is shown that the otherwise unstable coupling of the Langmuir and dust-charge relaxation modes becomes stable and the Langmuir waves are frequency down-shifted.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
The catalytic activities, to the reduction of SO2 by CO, of clusters PtlAum (l + m = 2) with or without preadsorbing CO molecules are investigated using first-principles density functional theory. We find that the PtAu(CO)n (n = 1–3) clusters show more excellent catalytic properties than either pure metallic catalysts. Preadsorption of CO to the catalysts could effectively avoid platinum-based catalyst sulfur poisoning; as more CO molecules preadsorbed to the catalysts, the energy barriers for the carbonyl sulfide (COS) molecule’s desorption from the catalyst are remarkably decreased. We propose an ideal catalytic cycle to simultaneously get rid of SO2 and CO over the catalysts PtAu(CO)3.
Resumo:
Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.