982 resultados para Probability Distribution
Resumo:
When constructing and using environmental models, it is typical that many of the inputs to the models will not be known perfectly. In some cases, it will be possible to make observations, or occasionally physics-based uncertainty propagation, to ascertain the uncertainty on these inputs. However, such observations are often either not available or even possible, and another approach to characterising the uncertainty on the inputs must be sought. Even when observations are available, if the analysis is being carried out within a Bayesian framework then prior distributions will have to be specified. One option for gathering or at least estimating this information is to employ expert elicitation. Expert elicitation is well studied within statistics and psychology and involves the assessment of the beliefs of a group of experts about an uncertain quantity, (for example an input / parameter within a model), typically in terms of obtaining a probability distribution. One of the challenges in expert elicitation is to minimise the biases that might enter into the judgements made by the individual experts, and then to come to a consensus decision within the group of experts. Effort is made in the elicitation exercise to prevent biases clouding the judgements through well-devised questioning schemes. It is also important that, when reaching a consensus, the experts are exposed to the knowledge of the others in the group. Within the FP7 UncertWeb project (http://www.uncertweb.org/), there is a requirement to build a Webbased tool for expert elicitation. In this paper, we discuss some of the issues of building a Web-based elicitation system - both the technological aspects and the statistical and scientific issues. In particular, we demonstrate two tools: a Web-based system for the elicitation of continuous random variables and a system designed to elicit uncertainty about categorical random variables in the setting of landcover classification uncertainty. The first of these examples is a generic tool developed to elicit uncertainty about univariate continuous random variables. It is designed to be used within an application context and extends the existing SHELF method, adding a web interface and access to metadata. The tool is developed so that it can be readily integrated with environmental models exposed as web services. The second example was developed for the TREES-3 initiative which monitors tropical landcover change through ground-truthing at confluence points. It allows experts to validate the accuracy of automated landcover classifications using site-specific imagery and local knowledge. Experts may provide uncertainty information at various levels: from a general rating of their confidence in a site validation to a numerical ranking of the possible landcover types within a segment. A key challenge in the web based setting is the design of the user interface and the method of interacting between the problem owner and the problem experts. We show the workflow of the elicitation tool, and show how we can represent the final elicited distributions and confusion matrices using UncertML, ready for integration into uncertainty enabled workflows.We also show how the metadata associated with the elicitation exercise is captured and can be referenced from the elicited result, providing crucial lineage information and thus traceability in the decision making process.
Resumo:
INTAMAP is a web processing service for the automatic interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the open geospatial consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an open source solution. The system couples the 52-North web processing service, accepting data in the form of an observations and measurements (O&M) document with a computing back-end realized in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a new markup language to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropies and extreme values. In the light of the INTAMAP experience, we discuss the lessons learnt.
Resumo:
The ERS-1 Satellite was launched in July 1991 by the European Space Agency into a polar orbit at about 800 km, carrying a C-band scatterometer. A scatterometer measures the amount of backscatter microwave radiation reflected by small ripples on the ocean surface induced by sea-surface winds, and so provides instantaneous snap-shots of wind flow over large areas of the ocean surface, known as wind fields. Inherent in the physics of the observation process is an ambiguity in wind direction; the scatterometer cannot distinguish if the wind is blowing toward or away from the sensor device. This ambiguity implies that there is a one-to-many mapping between scatterometer data and wind direction. Current operational methods for wind field retrieval are based on the retrieval of wind vectors from satellite scatterometer data, followed by a disambiguation and filtering process that is reliant on numerical weather prediction models. The wind vectors are retrieved by the local inversion of a forward model, mapping scatterometer observations to wind vectors, and minimising a cost function in scatterometer measurement space. This thesis applies a pragmatic Bayesian solution to the problem. The likelihood is a combination of conditional probability distributions for the local wind vectors given the scatterometer data. The prior distribution is a vector Gaussian process that provides the geophysical consistency for the wind field. The wind vectors are retrieved directly from the scatterometer data by using mixture density networks, a principled method to model multi-modal conditional probability density functions. The complexity of the mapping and the structure of the conditional probability density function are investigated. A hybrid mixture density network, that incorporates the knowledge that the conditional probability distribution of the observation process is predominantly bi-modal, is developed. The optimal model, which generalises across a swathe of scatterometer readings, is better on key performance measures than the current operational model. Wind field retrieval is approached from three perspectives. The first is a non-autonomous method that confirms the validity of the model by retrieving the correct wind field 99% of the time from a test set of 575 wind fields. The second technique takes the maximum a posteriori probability wind field retrieved from the posterior distribution as the prediction. For the third technique, Markov Chain Monte Carlo (MCMC) techniques were employed to estimate the mass associated with significant modes of the posterior distribution, and make predictions based on the mode with the greatest mass associated with it. General methods for sampling from multi-modal distributions were benchmarked against a specific MCMC transition kernel designed for this problem. It was shown that the general methods were unsuitable for this application due to computational expense. On a test set of 100 wind fields the MAP estimate correctly retrieved 72 wind fields, whilst the sampling method correctly retrieved 73 wind fields.
Resumo:
This thesis investigates the soil-pipeline interactions associated with the operation of large-diameter chilled gas pipelines in Britain, these are frost/pipe heave and ground cracking. The investigation was biased towards the definition of the mechanism of ground cracking and, the parameters which influence its generation and subsequent development, especially its interaction with frost heave. The study involved a literature review, questionnaire, large-scale test and small-scale laboratory model experiments. The literature review concentrated on soil-pipeline interactions and frost action, with frost/pipe heave often reported but ground cracking was seldom reported. A questionnaire was circulated within British Gas to gain further information on these interactions. The replies indicated that if frost/pipe heave was reported, ground cracking was also likely to be observed. These soil-pipeline interactions were recorded along 19% of pipelines in the survey and were more likely along the larger diameter, higher flow pipelines. A large-scale trial along a 900 mm pipeline was undertaken to assess the soil thermal, hydraulic and stress regimes, together with pipe and ground movements. Results indicated that cracking occurred intermittently along the pipeline during periods of rapid frost/pipe heave and ground movement and, that frozen annulus growth produced a ground surface profile was approximated by a normal probability distribution curve. This curve indicates maximum tensile strain directly over the pipe centre. Finally a small-scale laboratory model was operated to further define the ground cracking mechanism. Ground cracking was observed at small upward ground surface movement, and with continued movement the ground crack increased in width and depth. At the end of the experiments internal soil failure planes slanting upwards and away from the frozen annulus were noted. The suggested mechanism for ground cracking involved frozen annulus growth producing tensile strain in the overlying unfrozen soil, which when sufficient produced a crack.
Resumo:
INTAMAP is a Web Processing Service for the automatic spatial interpolation of measured point data. Requirements were (i) using open standards for spatial data such as developed in the context of the Open Geospatial Consortium (OGC), (ii) using a suitable environment for statistical modelling and computation, and (iii) producing an integrated, open source solution. The system couples an open-source Web Processing Service (developed by 52°North), accepting data in the form of standardised XML documents (conforming to the OGC Observations and Measurements standard) with a computing back-end realised in the R statistical environment. The probability distribution of interpolation errors is encoded with UncertML, a markup language designed to encode uncertain data. Automatic interpolation needs to be useful for a wide range of applications and the algorithms have been designed to cope with anisotropy, extreme values, and data with known error distributions. Besides a fully automatic mode, the system can be used with different levels of user control over the interpolation process.
Resumo:
The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.
Resumo:
This work presents a two-dimensional approach of risk assessment method based on the quantification of the probability of the occurrence of contaminant source terms, as well as the assessment of the resultant impacts. The risk is calculated using Monte Carlo simulation methods whereby synthetic contaminant source terms were generated to the same distribution as historically occurring pollution events or a priori potential probability distribution. The spatial and temporal distributions of the generated contaminant concentrations at pre-defined monitoring points within the aquifer were then simulated from repeated realisations using integrated mathematical models. The number of times when user defined ranges of concentration magnitudes were exceeded is quantified as risk. The utilities of the method were demonstrated using hypothetical scenarios, and the risk of pollution from a number of sources all occurring by chance together was evaluated. The results are presented in the form of charts and spatial maps. The generated risk maps show the risk of pollution at each observation borehole, as well as the trends within the study area. This capability to generate synthetic pollution events from numerous potential sources of pollution based on historical frequency of their occurrence proved to be a great asset to the method, and a large benefit over the contemporary methods.
Resumo:
We examine the statistics of three interacting optical solitons under the effects of amplifier noise and filtering. We derive rigorously the Fokker-Planck equation that governs the probability distribution of soliton parameters.
Resumo:
We examine the statistics of three interacting optical solitons under the effects of amplifier noise and filtering. We derive rigorously the Fokker-Planck equation that governs the probability distribution of soliton parameters.
Resumo:
This work attempts to shed light to the fundamental concepts behind the stability of Multi-Agent Systems. We view the system as a discrete time Markov chain with a potentially unknown transitional probability distribution. The system will be considered to be stable when its state has converged to an equilibrium distribution. Faced with the non-trivial task of establishing the convergence to such a distribution, we propose a hypothesis testing approach according to which we test whether the convergence of a particular system metric has occurred. We describe some artificial multi-agent ecosystems that were developed and we present results based on these systems which confirm that this approach qualitatively agrees with our intuition.
Resumo:
This work was supported by the Bulgarian National Science Fund under grant BY-TH-105/2005.
Resumo:
Motivation: Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function, and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Results: Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from “first passage probability distribution” to summarize statistics of ensemble averaged amino acid propensity values. In this paper, we introduce and elaborate this approach.
Resumo:
* This work was financially supported by RFBR-04-01-00858.
Resumo:
* This work was financially supported by RFBR-04-01-00858.
Resumo:
An experimental comparison of information features used by neural network is performed. The sensing method was used. Suboptimal classifier agreeable to the gaussian model of the training data was used as a probe. Neural nets with architectures of perceptron and feedforward net with one hidden layer were used. The experiments were carried out with spatial ultrasonic data, which are used for car’s passenger safety system neural controller learning. In this paper we show that a neural network doesn’t fully make use of gaussian components, which are first two moment coefficients of probability distribution. On the contrary, the network can find more complicated regularities inside data vectors and thus shows better results than suboptimal classifier. The parallel connection of suboptimal classifier improves work of modular neural network whereas its connection to the network input improves the specialization effect during training.