868 resultados para Price Stabilization
Resumo:
A two-stage H∞-based design procedure is described which uses a normalized coprime factor approach to robust stabilization of linear systems. A loop-shaping procedure is incroporated to allow the specification of performance characteristics. Theoretical justification of this technique and an outline of the design methodology are given.
Resumo:
Advances in functionality and reliability of carbon nanotube (CNT) composite materials require careful formulation of processing methods to ultimately realize the desired properties. To date, controlled dispersion of CNTs in a solution or a composite matrix remains a challenge, due to the strong van der Waals binding energies associated with the CNT aggregates. There is also insufficiently defined correlation between the microstructure and the physical properties of the composite. Here, we offer a review of the dispersion processes of pristine (non-covalently functionalized) CNTs in a solvent or a polymer solution. We summarize and adapt relevant theoretical analysis to guide the dispersion design and selection, from the processes of mixing/sonication, to the application of surfactants for stabilization, to the final testing of composite properties. The same approaches are expected to be also applicable to the fabrication of other composite materials involving homogeneously dispersed nanoparticles. © 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
We study the transition state of pericyclic reactions at elevated temperature with unbiased ab initio molecular dynamics. We find that the transition state of the intramolecular rearrangements for barbaralane and bullvalene remains aromatic at high temperature despite the significant thermal atomic motions. Structural, magnetic, and electronic properties of the dynamical transition state show the concertedness and aromatic character. Free-energy calculations also support the validity of the transition state theory for the present rearrangement reactions. The calculations demonstrate that cyclic delocalization represents a strong force to synchronize the thermal atomic motions even at high temperatures.
Resumo:
Estimating the financial value of pain informs issues as diverse as the market price of analgesics, the cost-effectiveness of clinical treatments, compensation for injury, and the response to public hazards. Such valuations are assumed to reflect a stable trade-off between relief of discomfort and money. Here, using an auction-based health-market experiment, we show that the price people pay for relief of pain is strongly determined by the local context of the market, that is, by recent intensities of pain or immediately disposable income (but not overall wealth). The absence of a stable valuation metric suggests that the dynamic behavior of health markets is not predictable from the static behavior of individuals. We conclude that the results follow the dynamics of habit-formation models of economic theory, and thus, this study provides the first scientific basis for this type of preference modeling.
Resumo:
This paper proposes a design methodology to stabilize relative equilibria in a model of identical, steered particles moving in the plane at unit speed. Relative equilibria either correspond to parallel motion of all particles with fixed relative spacing or to circular motion of all particles around the same circle. Particles exchange relative information according to a communication graph that can be undirected or directed and time-invariant or time-varying. The emphasis of this paper is to show how previous results assuming all-to-all communication can be extended to a general communication framework. © 2008 IEEE.
Resumo:
We provide a cooperative control algorithm to stabilize symmetric formations to motion around closed curves suitable for mobile sensor networks. This work extends previous results for stabilization of symmetric circular formations. We study a planar particle model with decentralized steering control subject to limited communication. Because of their unique spectral properties, the Laplacian matrices of circulant graphs play a key role. We illustrate the result for a skewed superellipse, which is a type of curve that includes circles, ellipses, and rounded parallelograms. © 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies. © 2007 IEEE.
Resumo:
This paper proposes a design methodology to stabilize isolated relative equilibria in a model of all-to-all coupled identical particles moving in the plane at unit speed. Isolated relative equilibria correspond to either parallel motion of all particles with fixed relative spacing or to circular motion of all particles with fixed relative phases. The stabilizing feedbacks derive from Lyapunov functions that prove exponential stability and suggest almost global convergence properties. The results of the paper provide a low-order parametric family of stabilizable collectives that offer a set of primitives for the design of higher-level tasks at the group level. © 2007 IEEE.
Resumo:
The paper studies the properties of a sinusoidally vibrating wedge billiard as a model for 2-D bounce juggling. It is shown that some periodic orbits that are unstable in the elastic fixed wedge become exponentially stable in the nonelastic vibrating wedge. These orbits are linked with certain classical juggling patterns, providing an interesting benchmark for the study of the frequency-locking properties in human rhythmic tasks. Experimental results on sensorless stabilization of juggling patterns are described. © 2006 IEEE.
Resumo:
The paper addresses the rhythmic stabilization of periodic orbits in a wedge billiard with actuated edges. The output feedback strategy, based on the sole measurement of impact times, results from the combination of a stabilizing state feedback control law and a nonlinear deadbeat state estimator. It is shown that the robustness of both the control law and the observer leads to a simple rhythmic controller achieving a large basin of attraction. Copyright © 2005 IFAC.
Resumo:
This paper presents a Lyapunov design for the stabilization of collective motion in a planar kinematic model of N particles moving at constant speed. We derive a control law that achieves asymptotic stability of the splay state formation, characterized by uniform rotation of N evenly spaced particles on a circle. In designing the control law, the particle headings are treated as a system of coupled phase oscillators. The coupling function which exponentially stabilizes the splay state of particle phases is combined with a decentralized beacon control law that stabilizes circular motion of the particles. © 2005 IEEE.
Resumo:
This paper introduces a stabilization problem for an elementary impact control system in the plane. The rich dynamical properties of the wedge billiard, combined to the relevance of the associated stabilization problem for feedback control issues in legged robotics make it a valuable benchmark for energy-based stabilization of impact control systems.