940 resultados para Prevertebral sympathetic ganglia
Resumo:
Ras proteins, key regulators of growth, differentiation, and malignant transformation, recently have been implicated in synaptic function and region-specific learning and memory functions in the brain. Rap proteins, members of the Ras small G protein superfamily, can inhibit Ras signaling through the Ras/Raf-1/mitogen-activated protein (MAP) kinase pathway or, through B-Raf, can activate MAP kinase. Rap and Ras proteins both can be activated through guanine nucleotide exchange factors (GEFs). Many Ras GEFs, but to date only one Rap GEF, have been identified. We now report the cloning of a brain-enriched gene, CalDAG-GEFI, which has substrate specificity for Rap1A, dual binding domains for calcium (Ca2+) and diacylglycerol (DAG), and enriched expression in brain basal ganglia pathways and their axon-terminal regions. Expression of CalDAG-GEFI activates Rap1A and inhibits Ras-dependent activation of the Erk/MAP kinase cascade in 293T cells. Ca2+ ionophore and phorbol ester strongly and additively enhance this Rap1A activation. By contrast, CalDAG-GEFII, a second CalDAG-GEF family member that we cloned and found identical to RasGRP [Ebinu, J. O., Bottorff, D. A., Chan, E. Y. W., Stang, S. L., Dunn, R. J. & Stone, J. C. (1998) Science 280, 1082–1088], exhibits a different brain expression pattern and fails to activate Rap1A, but activates H-Ras, R-Ras, and the Erk/MAP kinase cascade under Ca2+ and DAG modulation. We propose that CalDAG-GEF proteins have a critical neuronal function in determining the relative activation of Ras and Rap1 signaling induced by Ca2+ and DAG mobilization. The expression of CalDAG-GEFI and CalDAG-GEFII in hematopoietic organs suggests that such control may have broad significance in Ras/Rap regulation of normal and malignant states.
Resumo:
Sympathetic preganglionic neurons exhibit segment-specific projections. Preganglionic neurons located in rostral spinal segments project rostrally within the sympathetic chain, those located in caudal spinal segments project caudally, and those in midthoracic segments project either rostrally or caudally in segmentally graded proportions. Moreover, rostrally and caudally projecting preganglionic neurons are skewed toward the rostral and caudal regions, respectively, of each midthoracic segment. The mechanisms that establish these segment-specific projections are unknown. Here we show that experimental manipulation of retinoid signaling in the chicken embryo alters the segment-specific pattern of sympathetic preganglionic projections and that this effect is mediated by the somitic mesoderm. Application of exogenous retinoic acid to a single rostral thoracic somite decreases the number of rostrally projecting preganglionic neurons at that level. Conversely, disrupting endogenous synthesis of retinoic acid in a single caudal thoracic somite increases the number of rostrally projecting preganglionic neurons at that level. The number of caudally projecting neurons does not change in either case, indicating that the effect is specific for rostrally projecting preganglionic neurons. These results indicate that the sizes of the rostrally and caudally projecting populations may be independently regulated by different factors. Opposing gradients of such factors along the longitudinal axis of the thoracic region of the embryo could be sufficient, in combination, to determine the segment-specific identity of preganglionic projections.
Resumo:
N-type voltage-dependent Ca2+ channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice genetically deficient in the α1B subunit (Cav 2.2). The α1B-deficient null mice, surprisingly, have a normal life span and are free from apparent behavioral defects. A complete and selective elimination of N-type currents, sensitive to ω-conotoxin GVIA, was observed without significant changes in the activity of other VDCC types in neuronal preparations of mutant mice. The baroreflex response, mediated by the sympathetic nervous system, was markedly reduced after bilateral carotid occlusion. In isolated left atria prepared from N-type-deficient mice, the positive inotropic responses to electrical sympathetic neuronal stimulation were dramatically decreased compared with those of normal mice. In contrast, parasympathetic nervous activity in the mutant mice was nearly identical to that of wild-type mice. Interestingly, the mutant mice showed sustained elevation of heart rate and blood pressure. These results provide direct evidence that N-type VDCCs are indispensable for the function of the sympathetic nervous system in circulatory regulation and indicate that N-type VDCC-deficient mice will be a useful model for studying disorders attributable to sympathetic nerve dysfunction.
Resumo:
The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.
Resumo:
The basal ganglia are known to receive inputs from widespread regions of the cerebral cortex, such as the frontal, parietal, and temporal lobes. Of these cortical areas, only the frontal lobe is thought to be the target of basal ganglia output. One of the cortical regions that is a source of input to the basal ganglia is area TE, in inferotemporal cortex. This cortical area is thought to be critically involved in the recognition and discrimination of visual objects. Using retrograde transneuronal transport of herpes simplex virus type 1, we have found that one of the output nuclei of the basal ganglia, the substantia nigra pars reticulata, projects via the thalamus to TE. Thus, TE is not only a source of input to the basal ganglia, but also is a target of basal ganglia output. This result implies that the output of the basal ganglia influences higher order aspects of visual processing. In addition, we propose that dysfunction of the basal ganglia loop with TE leads to alterations in visual perception, including visual hallucinations.
Resumo:
Immunohistochemical visualization of the rat vesicular acetylcholine transporter (VAChT) in cholinergic neurons and nerve terminals has been compared to that for choline acetyltransferase (ChAT), heretofore the most specific marker for cholinergic neurons. VAChT-positive cell bodies were visualized in cerebral cortex, basal forebrain, medial habenula, striatum, brain stem, and spinal cord by using a polyclonal anti-VAChT antiserum. VAChT-immuno-reactive fibers and terminals were also visualized in these regions and in hippocampus, at neuromuscular junctions within skeletal muscle, and in sympathetic and parasympathetic autonomic ganglia and target tissues. Cholinergic nerve terminals contain more VAChT than ChAT immunoreactivity after routine fixation, consistent with a concentration of VAChT within terminal neuronal arborizations in which secretory vesicles are clustered. These include VAChT-positive terminals of the median eminence or the hypothalamus, not observed with ChAT antiserum after routine fixation. Subcellular localization of VAChT in specific organelles in neuronal cells was examined by immunoelectron microscopy in a rat neuronal cell line (PC 12-c4) expressing VAChT as well as the endocrine and neuronal forms of the vesicular monoamine transporters (VMAT1 and VMAT2). VAChT is targeted to small synaptic vesicles, while VMAT1 is found mainly but not exclusively on large dense-core vesicles. VMAT2 is found on large dense-core vesicles but not on the small synaptic vesicles that contain VAChT in PC12-c4 cells, despite the presence of VMAT2 immunoreactivity in central and peripheral nerve terminals known to contain monoamines in small synaptic vesicles. Thus, VAChT and VMAT2 may be specific markers for "cholinergic" and "adrenergic" small synaptic vesicles, with the latter not expressed in nonstimulated neuronally differentiated PC12-c4 cells.
Resumo:
Ganglia obtained at autopsy were examined by in situ hybridization from one patient with zoster (also called herpes zoster or shingles), two varicella-zoster virus (VZV)-seropositive patients with clinical evidence of zoster, one VZV-seronegative child, and one fetus. Ganglia positive for VZV had a hybridization signal in both neuronal and nonneuronal satellite cells. Ganglia obtained from the fetus and from the seronegative infant were consistently negative for VZV. Two striking observations were evident regarding the presence of VZV DNA in ganglia obtained from the individual with zoster at the time of death. First, ganglia innervating the sites of reactivation and ganglia innervating adjacent sites yielded strongly positive signals in neurons and satellite cells, whereas ganglia from distant sites were rarely positive. Second, VZV DNA was found in both the nuclei and the cytoplasm of neurons innervating areas of zoster. However, in neurons innervating zoster-free areas, VZV DNA was found only in the nucleus of neurons and their supporting satellite cells. Immunohistochemistry with a fluorescent monoclonal antibody to the VZV glycoprotein gpI, a late virus protein, revealed a positive signal in the cytoplasm of ganglia with clinical evidence of reactivation. These results illustrate that both neuronal and satellite cells become latently infected following primary VZV infection. The presence of VZV DNA and gpI in the cytoplasm of neurons demonstrates productive infection following reactivation at the site of latency.
Resumo:
The utrophin gene is closely related to the dystrophin gene in both sequence and genomic structure. The Duchenne muscular dystrophy (DMD) locus encodes three 14-kb dystrophin transcripts in addition to several smaller isoforms, one of which, Dp116, is specific to peripheral nerve. We describe here the corresponding 5.5-kb mRNA from the utrophin locus. This transcript, designated G-utrophin, is of particular interest because it is specifically expressed in the adult mouse brain and appears to be the predominant utrophin transcript in this tissue. G-utrophin is expressed in brain sites generally different from the regions expressing beta-dystroglycan. During mouse embryogenesis G-utrophin is also seen in the developing sensory ganglia. Our data confirm the close evolutionary relationships between the DMD and utrophin loci; however, the functions for the corresponding proteins probably differ.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
3B Carbon Dust, H and HH Carbon Pencils; Dr. Norman Thompson, University of Michigan Department of Surgery
Resumo:
The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was similar to 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.
Resumo:
Progress in understanding brain/behavior relationships in adult-acquired dysprosody has led to models of cortical hemispheric representation of prosodic processing based on functional (linguistic vs affective) or physical (timing vs pitch) parameters. These explanatory perspectives have not been reconciled, and also a number of neurobehavior syndromes that include dysprosody among their neurological signs have not yet been integrated. In addition to expanding the functional perspective on prosody, some of these syndromes have implicated a significant role of subcortical nuclei in prosodic competence. In this article, two patients with acquired dysprosodic speech following damage to basal ganglia nuclei were evaluated using behavioral, acoustic, cognitive, and radiographic approaches. Selective quantitative measures were performed on each individual’s performance to provide detailed verification and clarification of clinical observations, and to test hypotheses regarding prosodic function. These studies, combined with a review of related clinical research findings, exemplify the value of a broader perspective on the neurobehavioral dysfunction underlying acquired adult dysprosodic speech, and lead to a new, proposed conceptual framework for the cerebral representation of prosody.
Resumo:
The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.