911 resultados para Préservation de sites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

SmOx modified Rh(l 0 0) surfaces have been in-situ prepared by depositing metallic Sin and subsequently oxidizing under controlled conditions, and the interaction between the lanthanide oxide and transition metal has been characterized by means of X-ray photoelectron spectroscopy (XPS) and high-resolution electron-energy-loss spectroscopy (HREELS) as well as thermal desorption spectroscopy (TDS). As evidenced, the adsorption of CO on the modified surfaces shows some different features to the original surface of Rh(l 00). The covering of SmOx blocks some sites on the surface and consequently suppresses adsorption of the typical CO species with an uptake at about 500 K, while a novel desorption peak centered at 260 K emerges in the CO TDS. Correspondingly, the XP spectrum exhibits a new C Is peak at 287.9 eV and 0 Is peak at 532.6 eV. The intensity of the low temperature peak varies with the coverage of SmOx, which shows an actual correlation to the perimeter sites of SmOx particles on the surface. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface sites of MoP/SiO2 catalysts and their evolution under sulfiding conditions were characterized by IR spectroscopy using CO as the probe molecule. The HDS activities of thiophene were measured on the MoP/SiO2 catalyst that was subjected to different sulfidation and reactivation pretreatments. Cus Modelta+ (0 < delta less than or equal to 2) sites are probed on the surface of fresh MoP/SiO2 by molecularly adsorbed CO, exhibiting a characteristic IR band at 2045 cm(-1). The surface of MoP/SiO2 is gradually sulfided in HDS reactions, as revealed by the shift of the IR band at 2045 to ca. 2100 cm(-1). Although the surface of a MoP/SiO2 catalyst becomes partially sulfided, the HDS activity tests show that MoP/SiO2 is fairly stable in the initial stage of the HDS reaction, providing further evidence that molybdenum phosphide is a promising catalytic material for industrial HDS reactions. Two kinds of surface sulfur species are formed on the sulfided catalyst: reversibly and irreversibly bonded sulfur species. The MoP/SiO2 catalyst remains stable in the HDS of thiophene because most sulfur species formed under HDS conditions are reversibly bonded on the catalyst surface. A detrimental effect of presulfidation on the HDS activity is observed for the MoP/SiO2 catalyst treated by H2S/H-2 at temperatures higher than 623 K, which is ascribed to the formation of a large amount of the irreversibly bonded sulfur species. The irreversibly sulfided catalyst can be completely regenerated by an oxidation and a subsequent reduction under mild conditions. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acid sites in dealuminated HZSM-5 zeolite with crystal sizes down to the nanoscale were firstly characterized by the probe molecule trimethylphosphine (TMP). As evidenced by the combination of P-31 CP/MAS NMR, Al-27 MAS and H-1 --> Al-27 CP/MAS NMR measurements, the Bronsted acid sites of both microsized and nanosized HZSM-5 could be decreased upon the dealumination of zeolitic framework after hydrothermal treatment. At the same time, the appearance of Lewis acid sites was observed. The dealuminated nanosized HZSM-5 is easier to form Lewis acid sites than microsized HZSM-5, and the type of Lewis acid sites in nanosized HSM-5 is more than one. In addition, the origin of Lewis acid sites is mainly associated with the aluminum at ca. 30 ppm, in the Al-27 MAS NMR spectra, and only a part of which in the dealuminated HZSM-5 zeolite acts as Lewis acid sites. (C) 2002 Elsevier Science B.V. All rights reserved.