959 resultados para Potential impacts
Resumo:
Crop production is inherently sensitive to fluctuations in weather and climate and is expected to be impacted by climate change. To understand how this impact may vary across the globe many studies have been conducted to determine the change in yield of several crops to expected changes in climate. Changes in climate are typically derived from a single to no more than a few General Circulation Models (GCMs). This study examines the uncertainty introduced to a crop impact assessment when 14 GCMs are used to determine future climate. The General Large Area Model for annual crops (GLAM) was applied over a global domain to simulate the productivity of soybean and spring wheat under baseline climate conditions and under climate conditions consistent with the 2050s under the A1B SRES emissions scenario as simulated by 14 GCMs. Baseline yield simulations were evaluated against global country-level yield statistics to determine the model's ability to capture observed variability in production. The impact of climate change varied between crops, regions, and by GCM. The spread in yield projections due to GCM varied between no change and a reduction of 50%. Without adaptation yield response was linearly related to the magnitude of local temperature change. Therefore, impacts were greatest for countries at northernmost latitudes where warming is predicted to be greatest. However, these countries also exhibited the greatest potential for adaptation to offset yield losses by shifting the crop growing season to a cooler part of the year and/or switching crop variety to take advantage of an extended growing season. The relative magnitude of impacts as simulated by each GCM was not consistent across countries and between crops. It is important, therefore, for crop impact assessments to fully account for GCM uncertainty in estimating future climates and to be explicit about assumptions regarding adaptation.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
The probabilistic projections of climate change for the United Kingdom (UK Climate Impacts Programme) show a trend towards hotter and drier summers. This suggests an expected increase in cooling demand for buildings – a conflicting requirement to reducing building energy needs and related CO2 emissions. Though passive design is used to reduce thermal loads of a building, a supplementary cooling system is often necessary. For such mixed-mode strategies, indirect evaporative cooling is investigated as a low energy option in the context of a warmer and drier UK climate. Analysis of the climate projections shows an increase in wet-bulb depression; providing a good indication of the cooling potential of an evaporative cooler. Modelling a mixed-mode building at two different locations, showed such a building was capable of maintaining adequate thermal comfort in future probable climates. Comparing the control climate to the scenario climate, an increase in the median of evaporative cooling load is evident. The shift is greater for London than for Glasgow with a respective 71.6% and 3.3% increase in the median annual cooling load. The study shows evaporative cooling should continue to function as an effective low-energy cooling technique in future, warming climates.
Resumo:
We examine the effect of ozone damage to vegetation as caused by anthropogenic emissions of ozone precursor species and quantify it in terms of its impact on terrestrial carbon stores. A simple climate model is then used to assess the expected changes in global surface temperature from the resulting perturbations to atmospheric concentrations of carbon dioxide, methane, and ozone. The concept of global temperature change potential (GTP) metric, which relates the global average surface temperature change induced by the pulse emission of a species to that induced by a unit mass of carbon dioxide, is used to characterize the impact of changes in emissions of ozone precursors on surface temperature as a function of time. For NOx emissions, the longer-timescale methane perturbation is of the opposite sign to the perturbations in ozone and carbon dioxide, so NOx emissions are warming in the short term, but cooling in the long term. For volatile organic compound (VOC), CO, and methane emissions, all the terms are warming for an increase in emissions. The GTPs for the 20 year time horizon are strong functions of emission location, with a large component of the variability owing to the different vegetation responses on different continents. At this time horizon, the induced change in the carbon cycle is the largest single contributor to the GTP metric for NOx and VOC emissions. For NOx emissions, we estimate a GTP20 of −9 (cooling) to +24 (warming) depending on assumptions of the sensitivity of vegetation types to ozone damage.
Resumo:
Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO2, the climate response from sulphate is of the order decades while that of CO2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO2 and cooling by sulphate and nitrogen oxides.
Resumo:
In order to reduce environmental impacts and achieve sustainability, it is important to balance the interactions between the built and natural environment. The construction industry is becoming more aware of ecological concerns and the importance that biodiversity and maintenance ecosystem services has for sustainability. Bats constitute an important component of urban biodiversity and several species in the UK are highly dependent on buildings, making them particularly vulnerable to anthropogenic and environmental changes. Many buildings suitable for use as bat roosts often require re-roofing as they age and traditional bituminous roofing felts are frequently being replaced with breathable roofing membranes (BRMs). In the UK new building regulations and modern materials may substantially reduce the viability of existing roosts, yet at thesame time building regulations require that materials be fit for purpose. Reports suggest that both bats and BRMs may experience problems when the two interact. Such information makes it important to understand how house dwelling bats and BRMs may be affected. This paper considers the possible ways in which bats and BRMs may interact, how this could affect existing bat roosts within buildings and the implications for BRM service life predictions and warranties. Keywords –Breathable Roofing Membranes, Bats in Buildings, Material Deterioration, Sustainability, Conservation, Biodiversit
Exploring socioeconomic impacts of forest based mitigation projects: Lessons from Brazil and Bolivia
Resumo:
This paper aims to contribute new insights globally and regionally on how carbon forest mitigation contributes to sustainable development in South America. Carbon finance has emerged as a potential policy option to tackling global climate change, degradation of forests, and social development in poor countries. This paper focuses on evaluating the socioeconomic impacts of a set of forest based mitigation pilot projects that emerged under the United Nations Framework Convention on Climate Change. The paper reviews research conducted in 2001–2002, drawing from empirical data from four pilot projects, derived from qualitative stakeholder interviews, and complemented by policy documents and literature. Of the four projects studied three are located in frontier areas, where there are considerable pressures for conversion of standing forest to agriculture. In this sense, forest mitigation projects have a substantial role to play in the region. Findings suggest however, that all four projects have experienced cumbersome implementation processes specifically, due to weak social objectives, poor communication, as well as time constraints. In three out of four cases, stakeholders highlighted limited local acceptance at the implementation stages. In the light of these findings, we discuss opportunities for implementation of future forest based mitigation projects in the land use sector.
Resumo:
Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice sheet. The most compelling examples of climatic changes potentially related to AMOC abrupt variations, however, are found in high resolution palaeo-records from around the globe for the last glacial period. To study those more specifically, more and more fresh water hosing experiments have been performed under glacial conditions in the recent years. Here we compare an ensemble constituted by 11 such simulations run with 6 different climate models. All simulations follow a slightly different design, but are sufficiently close in their design to be compared. They all study the impact of a fresh water hosing imposed in the extra-tropical North Atlantic. Common features in the model responses to hosing are the cooling over the North Atlantic, extending along the sub-tropical gyre in the tropical North Atlantic, the southward shift of the Atlantic ITCZ and the weakening of the African and Indian monsoons. On the other hand, the expression of the bipolar see-saw, i.e., warming in the Southern Hemisphere, differs from model to model, with some restricting it to the South Atlantic and specific regions of the southern ocean while others simulate a widespread southern ocean warming. The relationships between the features common to most models, i.e., climate changes over the north and tropical Atlantic, African and Asian monsoon regions, are further quantified. These suggest a tight correlation between the temperature and precipitation changes over the extra-tropical North Atlantic, but different pathways for the teleconnections between the AMOC/North Atlantic region and the African and Indian monsoon regions.
Resumo:
Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a “climate-smart food system” that is more resilient to climate change influences on food security.
Resumo:
The potential impact of climate change on areas of strategic importance for water resources remains a concern. Here, river flow projections for the River Medway, above Teston in southeast England are presented, which is just such an area of strategic importance. The river flow projections use climate inputs from the Hadley Centre Regional Climate Model (HadRM3) for the time period 1960–2080 (a subset of the early release UKCP09 projections). River flow predictions are calculated using CATCHMOD, the main river flow prediction tool of the Environment Agency (EA) of England and Wales. In order to use this tool in the best way for climate change predictions, model setup and performance are analysed using sensitivity and uncertainty analysis. The model's representation of hydrological processes is discussed and the direct percolation and first linear storage constant parameters are found to strongly affect model results in a complex way, with the former more important for low flows and the latter for high flows. The uncertainty in predictions resulting from the hydrological model parameters is demonstrated and the projections of river flow under future climate are analysed. A clear climate change impact signal is evident in the results with a persistent lowering of mean daily river flows for all months and for all projection time slices. Results indicate that a projection of lower flows under future climate is valid even taking into account the uncertainties considered in this modelling chain exercise. The model parameter uncertainty becomes more significant under future climate as the river flows become lower. This has significant implications for those making policy decisions based on such modelling results. Copyright © 2010 John Wiley & Sons, Ltd.
Resumo:
Previous research suggests that the processing of agreement is affected by the distance between the agreeing elements. However, the unique contribution of structural distance (number of intervening syntactic phrases) to the processing of agreement remains an open question, since previous investigations do not tease apart structural and linear distance (number of intervening words). We used event related potentials (ERPs) to examine the extent to which structural distance impacts the processing of Spanish number and gender agreement. Violations were realized both within the phrase and across the phrase. Across both levels of structural distance, linear distance was kept constant, as was the syntactic category of the agreeing elements. Number and gender agreement violations elicited a robust P600 between 400 and 900ms, a component associated with morphosyntactic processing. No amplitude differences were observed between number and gender violations, suggesting that the two features are processed similarly at the brain level. Within-phrase agreement yielded more positive waveforms than across-phrase agreement, both for agreement violations and for grammatical sentences (no agreement by distance interaction). These effects can be interpreted as evidence that structural distance impacts the establishment of agreement overall, consistent with sentence processing models which predict that hierarchical structure impacts the processing of syntactic dependencies. However, due to the lack of an agreement by distance interaction, the possibility cannot be ruled out that these effects are driven by differences in syntactic predictability between the within-phrase and across-phrase configurations, notably the fact that the syntactic category of the critical word was more predictable in the within-phrase conditions.
Resumo:
The environmental impacts of genetically modified crops is still a controversial issue in Europe. The overall risk assessment framework has recently been reinforced by the European Food Safety Authority(EFSA) and its implementation requires harmonized and efficient methodologies. The EU-funded research project AMIGA − Assessing and monitoring Impacts of Genetically modified plants on Agro-ecosystems − aims to address this issue, by providing a framework that establishes protection goals and baselines for European agro-ecosystems, improves knowledge on the potential long term environmental effects of genetically modified (GM) plants, tests the efficacy of the EFSA Guidance Document for the Environmental Risk Assessment, explores new strategies for post market monitoring, and provides a systematic analysis of economic aspects of Genetically Modified crops cultivation in the EU. Research focuses on ecological studies in different EU regions, the sustainability of GM crops is estimated by analysing the functional components of the agro-ecosystems and specific experimental protocols are being developed for this scope.
Resumo:
Intensive farming focusing on monoculture grass species to maximise forage production has led to a reduction in the extent and diversity of species-rich grasslands. However, plant communities with higher species number (richness) are a potential strategy for more sustainable production and mitigation of greenhouse gas (GHG) emissions. Research has indicated the need to understand opportunities that forage mixtures can offer sustainable ruminant production systems. The objective of the two experiments reported here were to evaluate multiple species forage mixtures in comparison to ryegrass-dominant pasture, when conserved or grazed, on digestion, energy utilisation, N excretion, and methane emissions by growing 10–15 month old heifers. Experiment 1 was a 4 × 4 Latin square design with five week periods. Four forage treatments of: (1) ryegrass (control); permanent pasture with perennial ryegrass (Lolium perenne); (2) clover; a ryegrass:red clover (Trifolium pratense) mixture; (3) trefoil; a ryegrass:birdsfoot trefoil (Lotus corniculatus) mixture; and (4) flowers; a ryegrass:wild flower mixture of predominately sorrel (Rumex acetosa), ox-eye daisy (Leucanthemum vulgare), yarrow (Achillea millefolium), knapweed (Centaurea nigra) and ribwort plantain (Plantago lanceolata), were fed as haylages to four dairy heifers. Measurements included digestibility, N excretion, and energy utilisation (including methane emissions measured in respiration chambers). Experiment 2 used 12 different dairy heifers grazing three of the same forage treatments used to make haylage in experiment 1 (ryegrass, clover and flowers) and methane emissions were estimated using the sulphur hexafluoride (SF6) tracer technique. Distribution of ryegrass to other species (dry matter (DM) basis) was approximately 70:30 (clover), 80:20 (trefoil), and 40:60 (flowers) for experiment 1. During the first and second grazing rotations (respectively) in experiment 2, perennial ryegrass accounted for 95 and 98% of DM in ryegrass, and 84 and 52% of DM in clover, with red clover accounting for almost all of the remainder. In the flowers mixture, perennial ryegrass was 52% of the DM in the first grazing rotation and only 30% in the second, with a variety of other flower species occupying the remainder. Across both experiments, compared to the forage mixtures (clover, trefoil and flowers), ryegrass had a higher crude protein (CP) content (P < 0.001, 187 vs. 115 g kg −1 DM) and DM intake (P < 0.05, 9.0 vs. 8.1 kg day −1). Heifers in experiment 1 fed ryegrass, compared to the forage mixtures, had greater total tract digestibility (g kg −1) of DM (DMD; P < 0.008, 713 vs. 641) and CP (CPD, P < 0.001, 699 vs. 475), and used more intake energy (%) for body tissue deposition (P < 0.05, 2.6 vs. −4.9). For both experiments, heifers fed flowers differed the most compared to the ryegrass control for a number of measurements. Compared to ryegrass, flowers had 40% lower CP content (P < 0.001, 113 vs. 187 g kg −1), 18% lower DMD (P < 0.01, 585 vs. 713 g kg −1), 42% lower CPD (P < 0.001, 407 vs. 699 g kg −1), and 10% lower methane yield (P < 0.05, 22.6 vs. 25.1 g kg −1 DM intake). This study has shown inclusion of flowers in forage mixtures resulted in a lower CP concentration, digestibility and intake. These differences were due in part to sward management and maturity at harvest. Further research is needed to determine how best to exploit the potential environmental benefits of forage mixtures in sustainable ruminant production systems.
Resumo:
Purpose The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km2 covering a total area of 11,004 km2. Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg−1, with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg−1). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm−3. The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended.