965 resultados para Porous media flow
Resumo:
This thesis work has been developed in collaboration between the Department of Physics and Astronomy of the University of Bologna and the IRCCS Rizzoli Orthopedic Institute during an internship period. The study aims to investigate the sensitivity of single-sided NMR in detecting structural differences of the articular cartilage tissue and their correlation with mechanical behavior. Suitable cartilage indicators for osteoarthritis (OA) severity (e.g., water and proteoglycans content, collagen structure) were explored through four NMR parameters: T2, T1, D, and Slp. Structural variations of the cartilage among its three layers (i.e., superficial, middle, and deep) were investigated performing several NMR pulses sequences on bovine knee joint samples using the NMR-MOUSE device. Previously, cartilage degradation studies were carried out, performing tests in three different experimental setups. The monitoring of the parameters and the best experimental setup were determined. An NMR automatized procedure based on the acquisition of these quantitative parameters was implemented, tested, and used for the investigation of the layers of twenty bovine cartilage samples. Statistical and pattern recognition analyses on these parameters have been performed. The results obtained from the analyses are very promising: the discrimination of the three cartilage layers shows very good results in terms of significance, paving the way for extensive use of NMR single-sided devices for biomedical applications. These results will be also integrated with analyses of tissue mechanical properties for a complete evaluation of cartilage changes throughout OA disease. The use of low-priced and mobile devices towards clinical applications could concern the screening of diseases related to cartilage tissue. This could have a positive impact both economically (including for underdeveloped countries) and socially, providing screening possibilities to a large part of the population.
Resumo:
In this doctoral dissertation, a comprehensive methodological approach for the assessment of river embankments safety conditions, based on the integrated use of laboratory testing, physical modelling and finite element (FE) numerical simulations, is proposed, with the aim of contributing to a better understanding of the effect of time-dependent hydraulic boundary conditions on the hydro-mechanical response of river embankments. The case study and materials selected for the present research project are representative for the riverbank systems of Alpine and Apennine tributaries of the main river Po (Northern Italy), which have recently experienced various sudden overall collapses. The outcomes of a centrifuge test carried out under the enhanced gravity field of 50-g, on a riverbank model, made of a compacted silty sand mixture, overlying a homogeneous clayey silt foundation layer and subjected to a simulated flood event, have been considered for the definition of a robust and realistic experimental benchmark. In order to reproduce the observed experimental behaviour, a first set of numerical simulations has been carried out by assuming, for both the embankments and the foundation unit, rigid soil porous media, under partially saturated conditions. Mechanical and hydraulic soil properties adopted in the numerical analyses have been carefully estimated based on standard saturated triaxial, oedometer and constant head permeability tests. Afterwards, advanced suction-controlled laboratory tests, have been carried out to investigate the effect of suction and confining stresses on the shear strength and compressibility characteristics of the filling material and a second set of numerical simulations has been run, taking into account the soil parameters updated based on the most recent tests. The final aim of the study is the quantitative estimation of the predictive capabilities of the calibrated numerical tools, by systematically comparing the results of the FE simulations to the experimental benchmark.
Resumo:
We present a numerical methodology for the study of convective pore-fluid, thermal and mass flow in fluid-saturated porous rock basins. lit particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore-fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore-fluid flow and mass transport in fluid-saturated hydrothermal basins; (2) Convective pore-fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence off the distribution patterns of convective pore;fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore-fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.
Resumo:
This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.
Resumo:
Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.
Resumo:
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
The kinetics of drop penetration were studied by filming single drops of several different fluids (water, PEG200, PEG600, and HPC solutions) as they penetrated into loosely packed beds of glass ballotini, lactose, zinc oxide, and titanium dioxide powders. Measured times ranged from 0.45 to 126 s and depended on the powder particle size,viscosity, surface tensions, and contact angle. The experimental drop penetration times were compared to existing theoretical predictions by M. Denesuk et al. (J. Colloid Interface Sci. 158, 114, 1993) and S. Middleman (Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, 1995) but did not agree. Loosely packed powder beds tend to have a heterogeneous bed structure containing large macrovoids which do not participate in liquid flow but are included implicitly in the existing approach to estimating powder pore size. A new two-phase model was proposed where the total volume of the macrovoids was assumed to be the difference between the bed porosity and the tap porosity. A new parameter, the effective porosity (epsilon)eff, was defined as the tap porosity multiplied by the fraction of pores that terminate at a macrovoid and are effectively blocked pores. The improved drop penetration model was much more successful at estimating the drop penetration time on all powders and the predicted times were generally within an order of magnitude of the experimental results. (C) 2002 Elsevier Science (USA).
Resumo:
In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Mixed convection on the flow past a heated length and past a porous cavity located in a horizontal wall bounding a saturated porous medium is numerically simulated. The cavity is heated from below. The steady-state regime is studied for several intensities of the buoyancy effects due to temperature variations. The influences of Péclet and Rayleigh numbers on the flow pattern and the temperature distributions are examined. Local and global Nusselt numbers are reported for the heated surface. The convective-diffusive fluxes at the volume boundaries are represented using the UNIFAES, Unified Finite Approach Exponential-type Scheme, with the Power-Law approximation to reduce the computing time. The conditions established by Rivas for the quadratic order of accuracy of the central differencing to be maintained in irregular grids are shown to be extensible to other quadratic schemes, including UNIFAES, so that accuracy estimates could be obtained.
Resumo:
Hydraulic head is distributed through a medium with porous aspect. The analysis of hydraulic head from one point to another is used by the Richard's equation. This equation is equivalent to the groundwater ow equation that predicts the volumetric water contents. COMSOL 3.5 is used for computation applying Richard's equation. A rectangle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s fl ux of inlet as source of our fl uid is simulated. The domain have Richards' equation model in two dimension (2D). Hydraulic head increases proportional with moisture content.
Resumo:
Subclinical hypothyroidism (SHT) is a disease for which exact therapeutic approaches have not yet been established. Previous studies have suggested an association between SHT and coronary heart disease. Whether this association is related to SHT-induced changes in serum lipid levels or to endothelial dysfunction is unclear. The aim of this study was to determine endothelial function measured by the flow-mediated vasodilatation of the brachial artery and the carotid artery intima-media thickness (IMT) in a group of women with SHT compared with euthyroid subjects. Triglycerides, total cholesterol, HDL-C, LDL-C, apoprotein A (apo A), apo B, and lipoprotein(a) were also determined. Twenty-one patients with SHT (mean age: 42.4 ± 10.8 years and mean thyroid-stimulating hormone (TSH) levels: 8.2 ± 2.7 µIU/mL) and 21 euthyroid controls matched for body mass index, age and atherosclerotic risk factors (mean age: 44.2 ± 8.5 years and mean TSH levels: 1.4 ± 0.6 µIU/mL) participated in the study. Lipid parameters (except HDL-C and apo A, which were lower) and IMT values were higher in the common carotid and carotid bifurcation of SHT patients with positive serum thyroid peroxidase antibodies (TPO-Ab) (0.62 ± 0.2 and 0.62 ± 0.16 mm for the common carotid and carotid bifurcation, respectively) when compared with the negative TPO-Ab group (0.55 ± 0.24 and 0.58 ± 0.13 mm, for common carotid and carotid bifurcation, respectively). The difference was not statistically significant. We conclude that minimal thyroid dysfunction had no adverse effects on endothelial function in the population studied. Further investigation is warranted to assess whether subclinical hypothyroidism, with and without TPO-Ab-positive serology, has any effect on endothelial function.
Resumo:
We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.