942 resultados para Poly(2-hydroxyethyl Methacrylate)
Resumo:
The structure and the thermodegradation behavior of both poly(methyl methacrylate)-co-poly(3-tri(methoxysilyil)propyl methacrylate) polymer modified with silyl groups and of intercalated poly(methyl methacrylate)-co-poly(3- tri(methoxysilyil)propyl methacrylate)/Cloisite 15A™ nanocomposite have been in situ probed. The structural feature were comparatively studied by Fourier transform infrared spectroscopy (FTIR), 13C and 29Si nuclear magnetic resonance (NMR), and small angle X-ray scattering (SAXS) measurements. The intercalation of polymer in the interlayer galleries was evidenced by the increment of the basal distance from 31 to 45 Å. The variation of this interlayer distance as function of temperature was followed by in situ SAXS. Pristine polymer decomposition pathway depends on the atmosphere, presenting two steps under air and three under N2. The nanocomposites are more stable than polymer, and this thermal improvement is proportional to the clay loading. The experimental results indicate that clay nanoparticles play several different roles in polymer stabilization, among them, diffusion barrier, charring, and suppression of degradation steps by chemical reactions between polymer and clay. Charring is atmosphere dependent, occurring more pronounced under air. © 2012 Society of Plastics Engineers.
Resumo:
Purpose: The objectives of this study were to investigate the flexural strength (FS) and chemical interaction between 2-tert-butylaminoethyl methacrylate (TBAEMA) and a denture base acrylic resin. Materials and Methods: Specimens were divided into five groups according to the concentration of TBAEMA incorporated in acrylic resin Onda-Cryl (0%, 1%, 2%, 3%, 4%) and were submitted to Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (XPS-ESCA), and differential scanning calorimetry (DSC) analyses. FS of the specimens was tested, and results were analyzed by ANOVA/Tukey's test (α < 0.05). Results: Different nitrogen ratios were observed on specimens' surfaces: 0.36%, 0.54%, 0.35%, and 0.20% for groups 1%, 2%, 3%, and 4%, respectively. FTIR indicated copolymerization of acrylic resin and TBAEMA, and DSC results demonstrated a decrease in glass transition temperature (Tg). Significant differences were found for FS (p < 0.05). The mean values were 91.1 ± 5.5,A 77.0 ± 13.1,B 67.2 ± 12.5,B 64.4 ± 13.0,B and 67.2 ± 5.9B MPa for groups 0%, 1%, 2%, 3% and 4%, respectively (same superscript letters indicate no significant difference). Conclusions: The incorporation of TBAEMA in acrylic resin resulted in copolymerization and the presence of amine groups on specimens' surfaces, and in decreases of Tg and FS. © 2012 by the American College of Prosthodontists.
Resumo:
The reaction of living anionic polymers with 2,2,5,5-tetramethyl-1-(3-bromopropyl)-1-aza-2,5- disilacyclopentane (1) was investigated using coupled thin layer chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of byproducts as well as the major product were determined. The anionic initiator having a protected primary amine functional group, 2,2,5,5-tetramethyl- 1-(3-lithiopropyl)-1-aza-2,5-disilacyclopentane (2), was synthesized using all-glass high-vacuum techniques, which allows the long-term stability of this initiator to be maintained. The use of 2 in the preparation of well-defined aliphatic primary amine R-end-functionalized polystyrene and poly(methyl methacrylate) was investigated. Primary amino R-end-functionalized poly(methyl methacrylate) can be obtained near-quantitatively by reacting 2 with 1,1-diphenylethylene in tetrahydrofuran at room temperature prior to polymerizing methyl methacrylate at -78 °C. When 2 is used to initiate styrene at room temperature in benzene, an additive such as N,N,N',N'- tetramethylethylenediamine is necessary to activate the polymerization. However, although the resulting polymers have narrow molecular weight distributions and well-controlled molecular weights, our mass spectra data suggest that the yield of primary amine α-end-functionalized polystyrene from these syntheses is very low. The majority of the products are methyl α-end-functionalized polystyrene.
Resumo:
End-brominated poly(methyl methacrylate) (PMMABr) was prepared by atom transfer radical polymerization (ATRP) and employed in a series of atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRG) reactions. When coupling reactions were performed in the absence of a nitroso radical trap-traditional ATRC condition-very little coupling of the PMMA chains was observed, consistent with disproportionation as the major termination pathway for two PMMA chain-end radicals in our reactions. When 2-methyl-2-nitrosopropane (MNP) was used as the radical trap, coupling of the PMMA chains in this attempted RTA-ATRC reaction was again unsuccessful, owing to capping of the PMMA chains with a bulky nitroxide and preventing further coupling. Analogous reactions performed using nitrosobenzene (NBz) as the radical trap showed significant dimerization, as observed by gel permeation chromatography (GPC) by a shift in the apparent molecular weight compared to the PMMABr precursors. The extent of coupling was found to depend on the concentrion of NBz compared to the PMMABr chain ends, as well as the temperature and time of the coupling reaction. To a lesser extent, the concentrations of copper(I) bromide (CuBr), nitrogen ligand (N,N,N',N',N"-pentamethyldiethylenetriamine = PMDETA), and elemental copper (Cu) were also found to play a role in the success of the RTA-ATRC reaction. The highest levels of dimerization were observed when the coupling reaction was carried out at 80 degrees C for 0.5h, with ratio of 1:4:2.5:8:1 equiv of NBz: CuBr:Cu:PMDETA:PMMABr.
Resumo:
AIM Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. METHODS Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. RESULTS The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). CONCLUSIONS Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation.
Resumo:
Fibre Bragg grating (FBG) sensors have been fabricated in polymer photonic crystal fibre (PCF). Results are presented using two different types of polymer optical fibre (POF); first multimode PCF with a core diameter of 50µm based on poly(methyl methacrylate) (PMMA) and second, endlessly single mode PCF with a core diameter of 6µm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths to no longer than 10cm. However, both have improved attenuation of under 10dB/m in the 800nm spectral region, thus allowing for fibre lengths to be much longer. The focus of current research is to utilise the increased fibre length, widening the range of sensor applications. The Bragg wavelength shift of a grating fabricated in PMMA fibre at 827nm has been monitored whilst the POF is thermally annealed at 80°C for 7 hours. The large length of POF enables real time monitoring of the grating, which demonstrates a permanent negative Bragg wavelength shift of 24nm during the 7 hours. This creates the possibility to manufacture multiplexed Bragg sensors in POF using a single phase mask in the UV inscription manufacturing. TOPAS holds certain advantages over PMMA including a much lower affinity for water, this should allow for the elimination of cross-sensitivity to humidity when monitoring temperature changes or axial strain, which is a significant concern when using PMMA fibre.
Resumo:
The enzymatic kinetic resolution of tert-butyl 2-(1-hydroxyethyl) phenylcarbamate via lipase-catalyzed transesterification reaction was studied. We investigated several reaction conditions and the carbamate was resolved by Candida antarctica lipase B (CAL-B), leading to the optically pure (R)- and (S)-enantiomers. The enzymatic process showed excellent enantioselectivity (E > 200). (R)- and (S)-tert-butyl 2-(1-hydroxyethyl) phenylcarbamate were easily transformed into the corresponding (R)and (S)-1-(2-aminophenyl)ethanols.
Resumo:
In the present work we investigated the electrochemical behavior of PVA on polycrystalline Pt and single-crystal Pt electrodes. PVA hampered the characteristic hydrogen UPD and anion adsorption on all investigated surfaces, with the processes on Pt(110) being the most affected by the PVA presence. Several oxidation waves appeared as the potential was swept in the positive direction and the Pt(111) was found to be the most active for the oxidation processes. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3615965] All rights reserved.
Resumo:
This work investigates the influence of the addition of cerium (IV) ions on the anticorrosion properties of organic-inorganic hybrid coatings applied to passivated tin coated steel. In order to evaluate the specific effect of cerium (IV) addition on nanostructural features of the organic and inorganic phases of the hybrid coating, the hydrolytic polycondensation of silicon alkoxide and the radical polymerization of the methyl methacrylate (MMA) function were induced separately. The corrosion resistance of the coatings was evaluated by means of linear polarization, Tafel type curves and electrochemical impedance measurements. The impedance results obtained for the hybrid coatings were discussed based on an electrical equivalent circuit used to fit the experimental data. The electrochemical results clearly showed the improvement of the protective properties of the organic-inorganic hybrid coating mainly when the cerium (IV) was added to the organic phase solution precursor, which seemed to be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This article reports experimental results obtained in a laboratory-scale photochemical reactor on the photodegradation of poly(ethylene glycol) (PEG) in aqueous solutions by means of the photo-Fenton and H(2)O(2)/UV processes. Dilute water solutions of PEG were fed to a batch reactor, mixed with pertinent reactants, and allowed to react under different conditions. Reaction progress was evaluated by sampling and analyzing the concentration of the total organic carbon (TOC) in solution as a function of the reaction time. Organic acids formed during oxidation were determined by HPLC analyses. The main acids detected in both processes were acetic and formic. Glycolic acid was detected only in the photo-Fenton process, and malonic acid was detected only in the H(2)O(2)/UV treatment, indicating that different reaction paths occur in these processes. The characteristics of both processes are discussed, based on the evolution of the TOC-time curves and the concentration profiles of the monitored organic acids. The experimental results constitute a contribution to the design of industrial processes for the treatment of wastewaters containing soluble polymers with similar properties.
Resumo:
New hybrid composites based on mesostructured V(2)O(5) containing intercalated poly(ethylene oxide), poly-o-methoxyaniline and poly(ethylene oxide)/poly-o-methoxyaniline were prepared. The results suggest that the polymers were intercalated into the layers of the mesostructured V(2)O(5). Electrochemical studies showed that the presence of both polymers in the mesostructured V(2)O(5) (ternary hybrid) leads to an increase in total charge and stability after several cycles compared with binary hybrid composites. This fact makes this material a potential component as cathode for lithium ion intercalation and further, a promising candidate for applications in batteries.
Resumo:
One major challenge for the widespread application of direct methanol fuel cells (DMFCs) is to decrease the amount of platinum used in the electrodes, which has motivated a search for novel electrodes containing platinum nanoparticles. In this study, platinum nanoparticles were electrodeposited on layer-by-layer (LbL) films from TiO(2) and poly(vinyl sulfonic) (PVS), by immersing the films into a H(2)PtCl(6) solution and applying a 100 mu A current during different electrode position times. Scanning tunnel microscopy (STM) and atomic force microscopy (AFM) images showed increased platinum particle size and electrode roughness for increasing electrodeposition times. The potentiodynamic profile of the electrodes indicated that oxygen-like species in 0.5 mol L(-1) H(2)SO(4) were formed at less positive potentials for the smallest platinum particles. Electrochemical impedance spectroscopy measurements confirmed the high reactivity for the water dissociation and the large amount of oxygen-like species adsorbed on the smallest platinum nanoparticles. This high oxophilicity of the smallest nanoparticles was responsible for the electrocatalytic activity of Pt-TiO(2)/PVS systems for methanol electrooxidation, according to the Langmuir-Hinshelwood bifunctional mechanism. Significantly, the approach used here combining platinum electrodeposition and LbL matrices allows one to both control the particle size and optimize methanol electrooxidation, being therefore promising for producing membrane-electrode assemblies of DMFCs.
Resumo:
The structure of the product from the free radical bulk copolymerization of methyl methacrylate (MMA) and allyl acetate (AAc) was investigated. The mole fraction of AAc plays an important role in the copolymerization of these two monomers. Molecular weight (MW) and molecular weight distribution (MWD) are completely altered when the feed composition is dominantly AAc. NMR spectroscopy confirmed the incorporation of AAc into the polymer. However, no allyl-allyl linkages were observed at low conversions. T-g was found to be affected by the incorporation of AAc into the polymer. (C) 2001 Society of Chemical Industry.
Resumo:
Cryptic exons or pseudoexons are typically activated by point mutations that create GT or AG dinucleotides of new 5' or 3' splice sites in introns, often in repetitive elements. Here we describe two cases of tetrahydrobiopterin deficiency caused by mutations improving the branch point sequence and polypyrimidine tracts of repeat-containing pseudoexons in the PTS gene. In the first case, we demonstrate a novel pathway of antisense Alu exonization, resulting from an intronic deletion that removed the poly(T)-tail of antisense AluSq. The deletion brought a favorable branch point sequence within proximity of the pseudoexon 3' splice site and removed an upstream AG dinucleotide required for the 3' splice site repression on normal alleles. New Alu exons can thus arise in the absence of poly(T)-tails that facilitated inclusion of most transposed elements in mRNAs by serving as polypyrimidine tracts, highlighting extraordinary flexibility of Alu repeats in shaping intron-exon structure. In the other case, a PTS pseudoexon was activated by an A>T substitution 9 nt upstream of its 3' splice site in a LINE-2 sequence, providing the first example of a disease-causing exonization of the most ancient interspersed repeat. These observations expand the spectrum of mutational mechanisms that introduce repetitive sequences in mature transcripts and illustrate the importance of intronic mutations in alternative splicing and phenotypic variability of hereditary disorders.
Resumo:
The photobleaching of the lasing dye Rhodamine 6G embedded in the solid matrix poly(methyl methacrylate) was investigated using a photoacoustic technique. Chopped laser radiation from an argon ion laser at four different wavelengths was used for the study. Experimental results indicate that the photobleaching rate is directly proportional to the incident laser power while it decreases with increase in concentration of the dye molecules. In the present case we have not observed any dependence of photobleaching on the chopping frequency. One-photon absorption is found to be responsible for the photobleaching of the dye within the selected range of laser power