801 resultados para Plastic morphology
Resumo:
Mutations designated gtaC and gtaE that affect alpha-phosphoglucomutase activity required for interconversion of glucose 6-phosphate and alpha-glucose 1-phosphate were mapped to the Bacillus subtilis pgcA (yhxB) gene. Backcrossing of the two mutations into the 168 reference strain was accompanied by impaired alpha-phosphoglucomutase activity in the soluble cell extract fraction, altered colony and cell morphology, and resistance to phages phi29 and rho11. Altered cell morphology, reversible by additional magnesium ions, may be correlated with a deficiency in the membrane glycolipid. The deficiency in biofilm formation in gtaC and gtaE mutants may be attributed to an inability to synthesize UDP-glucose, an important intermediate in a number of cell envelope biosynthetic processes.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.
Resumo:
The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.
Resumo:
Myxidium volitans sp. nov. (Myxozoa: Myxidiidae) parasitizing the hypertrophied green-brownish gallbladder of the teleost Dactylopterus volitans, collected in the Atlantic coast near Niterói, Brazil was described based on ultrastructural studies. The spores were fusiform, sometimes slightly crescent-shaped on average 21.7 ± 0.3 µm (mean ± standard deviation) (n = 50) long and 5.6 ± 0.4 µm (n = 30) wide. The spore wall was thin and smooth, comprising two equally-sized valves joined by a hardly visible sutural ridge. Spores containing two pyriform polar capsules (PC) (5.0 ± 0.4 × 2.3 ± 0.3 µm) (n = 30) are situated in each extremity of the spore. The PC wall was composed of hyaline layer (0.20-0.29 µm thick) and by a thin external granular layer. Each PC contains a polar filament (PF) with irregular arrangements that was projected from its apical region to the bases of PC and coiled laterally from bases to the tip of PC. Some regular striations and S-like structures in the periphery of the PFs with four-five irregular sections were observed. Based on the spore morphology, ultrastructural differences and the specificity of the host we describe this parasite as a new myxosporidian, named M. volitans sp. nov.
Resumo:
Candida parapsilosis, currently divided into three distinct species, proliferates in glucose-rich solutions and has been associated with infections resulting from the use of medical devices made of plastic, an environment common in dialysis centres. The aims of this study were (i) to screen for Candida orthopsilosis and Candida metapsilosis (100 environmental isolates previously identified as C. parapsilosis), (ii) to test the ability of these isolates to form biofilm and (iii) to investigate the in vitro susceptibility of Candida spp biofilms to the antifungal agents, fluconazole (FLC) and amphotericin B (AMB). Isolates were obtained from a hydraulic circuit collected from a haemodialysis unit. Based on molecular criteria, 47 strains were re-identified as C. orthopsilosis and 53 as C. parapsilosis. Analyses using a formazan salt reduction assay and total viable count, together with microscopy studies, revealed that 72 strains were able to form biofilm that was structurally similar, but with minor differences in morphology. A microtitre-based colorimetric assay used to test the susceptibility of fungal biofilms to AMB and FLC demonstrated that the C. parapsilosis complex displayed an increased resistance to these antifungal agents. The results from these analyses may provide a basis for implementing quality controls and monitoring to ensure the microbiological purity of dialysis water, including the presence of yeast.
Resumo:
The insect fat body plays major roles in the intermediary metabolism, in the storage and transport of haemolymph compounds and in the innate immunity. Here, the overall structure of the fat body of five species of mosquitoes (Aedes albopictus, Aedes fluviatilis, Culex quinquefasciatus, Anopheles aquasalis and Anopheles darlingi) was compared through light, scanning and transmission electron microscopy. Generally for mosquitoes, the fat body consists of lobes projecting into the haemocoel and is formed by great cell masses consisting of trophocytes and oenocytes. Trophocytes are rich in lipid droplets and protein granules. Interestingly, brown pigment granules, likely ommochromes, were found exclusively in the trophocytes located within the thorax and near the dorsal integument of Anopheles, which is suggestive of the role these cells play in detoxification via ommochrome storage. This study provides a detailed comparative analysis of the fat body in five different mosquito species and represents a significant contribution towards the understanding of the structural-functional relationships associated with this organ.
Resumo:
Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.
Resumo:
Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size.
Resumo:
Since 1984, Anopheles (Kerteszia) lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.
Resumo:
The family Acrochordiceratidae Arthaber, 1911 ranges in age from latest Spathian to the middle/late Anisian boundary, and it represents a major component of ammonoid faunas during that time. The middle Anisian genus Acrochordiceras Hyatt, 1877 is the most widespread taxon of the family and occurs abundantly worldwide within the low paleolatitude belt. However, there is a profusion of species names available for Acrochordiceras. This excessive diversity at the species level essentially results from the fact that sufficiently large samples were not available, thus leading to a typological approach to its taxonomy. Based on new extensive collections obtained from the Anisian (Middle Triassic) Fossil Hill Member (Star Peak Group, north-west Nevada) for which a high resolution biostratigraphic frame is available, the taxonomy and biostratigraphy of the genus Acrochordiceras Hyatt, 1877 is herein revised with respect to its intra-specific variation. Morphological and biometric studies (c. 550 bedrock-controlled specimens were measured) show that only one species occurs in each stratigraphic level. Continuous ranges of intra-specific variation of studied specimens enable us to synonymize Haydenites Diener, 1907, Silesiacrochordiceras Diener, 1916 and Epacrochordiceras Spath, 1934 with Acrochordiceras Hyatt, 1877. Three stratigraphically successive species are herein recognized in the low paleolatitude middle Anisian faunas from Nevada: A. hatschekii (Diener, 1907), A. hyatti Meek, 1877 and A. carolinae Mojsisovics, 1882. Moreover, an assessment of intra-specific variation of the adult size range does not support recognition of a dimorphic pair (Acrochordiceras and Epacrochordiceras) as previously suggested by other workers (Epacrochordiceras is the compressed and weakly ornamented end-member variant of Acrochordiceras). The successive middle Anisian species of Acrochordiceras form an anagenetic lineage characterized by increasing involution, adult size and intra-specific variation. This taxonomic revision based on new bedrock-controlled collections is thus an important prerequisite before studying the evolution of the group.
Habitat, morphology and karyotype of the Saharan shrew Crocidura tarfayaensis (Mammalia : Soricidae)
Resumo:
The Saharan shrew Crocidura tarfayaensis Vesmanis and Vesmanis, 1980, has a limited disribution along the Atlantic coast of Sahara, south of Agadir (Morocco) through Western Sahara into Mauritania and is only known from few captures and some owl pellets. Here we report field data from the successful trapping of five specimens of C. tarfayaensis in the Guelmim region. The habitat was characterized by sand dunes along a river, with dense shrubberies of Tamarix sp., the huge grass Erianthus ravennae (Poaceae) and flat bushes of Atriplex glauca var. ifniensis (Chenopodiaceae). Morphological discrimination with C. whitakeri were examined. The chromosomes of C. tarfayaensis revealed a karyotype of 2n = 36, similar to that of the Canary shrew C. canariensis and the Sicilian shrew C. sicula. In conclusion, C. tarfayaensis seems to be a descendant of the presumed continental ancestor of the two island species.
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.
Resumo:
Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.