941 resultados para Plasmodium coatneyi
Resumo:
In order to determine the frequency of therapeutic failures to chloroquine (CQ) in patients with malaria due to either Plasmodium falciparum or P. vivax, and to explore the usefulness of a malaria-free city as a sentinel site to monitor the emergence of drug resistance, 53 patients (44 infected with P. vivax and 9 with P. falciparum) were evaluated at the Laboratory of Parasitology, Universidad del Valle in Cali, Colombia. Patients received 25 mg/kg of CQ divided in three doses over 48 h; they were followed during 28 days according to WHO/PAHO protocols. While therapeutic failures to CQ in the P. vivax group were not detected, the proportion of therapeutic failures in the P. falciparum group was high (78%) and consistent with the reports from endemic areas in Colombia. The diverse origin of cases presenting therapeutic failure confirmed that P. falciparum resistant to CQ is widespread in Colombia, and further supports the change in the national antimalarial drug scheme. Monitoring of drug resistance in malaria free areas would be useful to identify sites requiring efficacy evaluation, and in some situations could be the most appropriate alternative to collect information from endemic areas where therapeutic efficacy studies are not feasible.
Resumo:
Serine repeat antigen 5 (SERA5) is an abundant antigen of the human malaria parasite Plasmodium falciparum and is the most strongly expressed member of the nine-gene SERA family. It appears to be essential for the maintenance of the erythrocytic cycle, unlike a number of other members of this family, and has been implicated in parasite egress and/or erythrocyte invasion. All SERA proteins possess a central domain that has homology to papain except in the case of SERA5 (and some other SERAs), where the active site cysteine has been replaced with a serine. To investigate if this domain retains catalytic activity, we expressed, purified, and refolded a recombinant form of the SERA5 enzyme domain. This protein possessed chymotrypsin-like proteolytic activity as it processed substrates downstream of aromatic residues, and its activity was reversed by the serine protease inhibitor 3,4-diisocoumarin. Although all Plasmodium SERA enzyme domain sequences share considerable homology, phylogenetic studies revealed two distinct clusters across the genus, separated according to whether they possess an active site serine or cysteine. All Plasmodia appear to have at least one member of each group. Consistent with separate biological roles for members of these two clusters, molecular modeling studies revealed that SERA5 and SERA6 enzyme domains have dramatically different surface properties, although both have a characteristic papain-like fold, catalytic cleft, and an appropriately positioned catalytic triad. This study provides impetus for the examination of SERA5 as a target for antimalarial drug design.
Resumo:
Alternative, non-microscopic methods for the diagnosis of malaria have recently become available. Among these, rapid dipstick methods stand out. One such test, OptiMAL®, is based on the immunochromatographic detection of Plasmodium lactate dehydrogenase (pLDH) and has the capacity to detect and distinguish infections caused by P. falciparum and Plasmodium sp. This capacity is particularly important in countries where different species of Plasmodium co-exist. In this study we evaluated the performance of OptiMAL® in an urban referral center for malaria diagnosis. Two sets of patients were included: one (n = 112) having predetermined infections with P. falciparum or P. vivax and individuals with negative blood smears; and another consisting of all eligible consecutive patients (n = 80) consulting for diagnosis at the referral center during one month. The overall diagnostic efficiency of OptiMAL® for both sets of patients was 96.9%. Efficiency was higher for P. vivax (98.1%) than for P. falciparum (94.9%). These results corroborate the diagnostic utility of OptiMAL® in settings where P. vivax and P. falciparum co-exist and support its implementation where microscopic diagnosis is unavailable and in circumstances that exceed the capacity of the local microscopic diagnosis facility.
Resumo:
The schizont maturation assay for in vitro drug sensitivity tests has been a standard method employed in the global baseline assessment and monitoring of drug response in Plasmodium falciparum. This test is limited in its application to synchronous plasmodial infections because it evaluates the effect of drug on the maturation of parasite especially from ring to schizont stage and therefore synchronized P. falciparum cultures are required. On the other hand, P. knowlesi, a simian malaria parasite has a unique 24-h periodicity and maintains high natural synchronicity in monkeys. The present report presents the results of a comparative study on the course of in vitro maturation of sorbitol synchronized P. falciparum and naturally synchronous P. knowlesi. Ring stage parasites were incubated in RPMI medium supplemented with 10-15% pooled homologous serum in flat-bottomed 96-well micro plates using a candle jar at 37°C. The results suggest that the ideal time for harvesting the micro-assay plates for in vitro drug sensitivity test for sorbitol-synchronized P. falciparum and naturally synchronous P. knowlesi are from 26 to 30 h and from 22 to 25 h, respectively. The advantages of using P. knowlesi in chemotherapeutic studies are discussed.
Resumo:
Phenothiazine drugs - fluphenazine, chlorpromazine, methotrimeprazine and trifluoperazine - were evaluated as modulating agents against Brazilian chloroquine-resistant fresh isolates of Plasmodium falciparum. Aiming to simulate therapeutic schedules, chloroquine was employed at the concentration used for sensitive falciparum malaria treatment and anti-psychotic therapeutic concentrations of the phenothiazine drugs were adopted in two-fold serial dilutions. The in vitro microtechnique for drug susceptibility was employed. Unlike earlier reported data, the phenothiazine modulating effect was not observed. However, all the drugs demonstrated intrinsic antiplasmodial activity in concentrations lower than those described in the literature. In addition, IC50 estimates have been shown to be inferior to the usual anti-psychotic therapeutic concentrations. Statistical analysis also suggested an increase in the parasitaemia rate or, even, a predominant antiparasitic effect of phenothiazine over chloroquine when used in combination.
Resumo:
The effect of antimalarials on gametocytes can influence transmission and the spread of drug resistance. In order to further understand this relationship, we determined the proportion of gametocyte carriers over time post-treatment in patients with uncomplicated Plasmodium falciparum malaria who were treated with either chloroquine (CQ) or sulfadoxine/pyrimethamine (SP). The overall proportion of gametocyte carriers was high (85%) and not statistically significantly different between the CQ and SP treatment groups. However, an increased risk of carrying gametocytes on day 14 of follow up (1.26 95% CI 1.10-1.45) was found among patients having therapeutic failure to CQ compared with patients having an adequate therapeutic response. This finding confirms and extends reports of increased risk of gametocytaemia among CQ resistant P. falciparum.
Resumo:
Severe anemia is the earliest and a frequently fatal complication of Plasmodium falciparum infection. Here we describe Aotus infulatus as a primate model suitable to study this malaria complication. Both non-splenectomized and splenectomized monkeys receiving different inocula of P. falciparum FVO strain presented large (> 50%) decreases in hematocrit values during infection. Non-splenectomized animals were able to control parasite growth (parasitemia did not exceed 4%), but they had to be treated because of severe anemia. Three of 4 splenectomized monkeys did not control parasitemia and were treated, but developed severe anemia after treatment when presenting a negative blood film. Destruction of parasitized red blood cells alone cannot account for the degree of anemia. Non-splenectomized monkeys repeatedly infected with homologous parasites became rapidly and progressively resistant to reinfection and to the development of severe anemia. The data presented here point to A. infulatus as a suitable model for studying the pathogenesis of severe malarial infection.
Resumo:
A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay) was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7) parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.
Resumo:
BACKGROUND: Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. METHODS: To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. RESULTS: Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. CONCLUSION: Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2.
Resumo:
Malaria remains globally the most important parasitic disease of man. Data on its deleterious effects during pregnancy have been extensively documented in hyperendemic, holoendemic, and mesoendemic areas from Africa and Asia where Plasmodium falciparum is responsible for almost all infections. However, knowledge about malaria during pregnancy in areas where transmission is unstable and P. vivax is the most prevalent species, such as the Brazilian Amazon, is scarce. Here, we report a preliminary cross sectional descriptive study, carried out at the Fundação de Medicina Tropical do Amazonas, a reference centre for diagnosis and treatment of tropical diseases in the west-Amazon (Manaus, Brazil). A total of 1699 febrile childbearing age women had positive thick blood smears to Plasmodium species, between January and November 1997: 1401 (82.5%) were positive for P. vivax , 286 (16.8%) for P. falciparum and 12 (0.07%) carried mixed infections. From the malarious patients, 195 were pregnant. The ratio of P. falciparum to P. vivax infections in the group of non-pregnant infected women was 1:5.6 while it was 1:2.3 in that of pregnant infected ones. Similar rates or even proportionally more vivax infections during pregnancy were expected to occur, in function of the contraindication of primaquine with the resulting increased P. vivax relapse rates. Such an observation suggests that the mechanism of resistance/susceptibility to infection and/or malaria pathogenesis in pregnant women may differ according to Plasmodium species and that the extensively described increase in the frequencies of malaria infection during pregnancy may be specifically due to P. falciparum infection.
Resumo:
BACKGROUND: Malaria is almost invariably ranked as the leading cause of morbidity and mortality in Africa. There is growing evidence of a decline in malaria transmission, morbidity and mortality over the last decades, especially so in East Africa. However, there is still doubt whether this decline is reflected in a reduction of the proportion of malaria among fevers. The objective of this systematic review was to estimate the change in the Proportion of Fevers associated with Plasmodium falciparum parasitaemia (PFPf) over the past 20 years in sub-Saharan Africa. METHODS: Search strategy. In December 2009, publications from the National Library of Medicine database were searched using the combination of 16 MeSH terms.Selection criteria. Inclusion criteria: studies 1) conducted in sub-Saharan Africa, 2) patients presenting with a syndrome of 'presumptive malaria', 3) numerators (number of parasitologically confirmed cases) and denominators (total number of presumptive malaria cases) available, 4) good quality microscopy.Data collection and analysis. The following variables were extracted: parasite presence/absence, total number of patients, age group, year, season, country and setting, clinical inclusion criteria. To assess the dynamic of PFPf over time, the median PFPf was compared between studies published in the years ≤2000 and > 2000. RESULTS: 39 studies conducted between 1986 and 2007 in 16 different African countries were included in the final analysis. When comparing data up to year 2000 (24 studies) with those afterwards (15 studies), there was a clear reduction in the median PFPf from 44% (IQR 31-58%; range 7-81%) to 22% (IQR 13-33%; range 2-77%). This dramatic decline is likely to reflect a true change since stratified analyses including explanatory variables were performed and median PFPfs were always lower after 2000 compared to before. CONCLUSIONS: There was a considerable reduction of the proportion of malaria among fevers over time in Africa. This decline provides evidence for the policy change from presumptive anti-malarial treatment of all children with fever to laboratory diagnosis and treatment upon result. This should insure appropriate care of non-malaria fevers and rationale use of anti-malarials.
Resumo:
Using DNA extracted from 112 parasitised blood blots, we screened for the population marker of chloroquine resistance (CQR) pfcrt K76T in Plasmodium falciparum infections from Guyana. Pfmdr1 mutations S1034C, N1042D, and D1246Y also associated with CQR were surveyed as well in 15 isolates for which the in vitro responses to CQ were known. Results indicate that the pfcrt K76T is ubiquitous in this environment, and confirmatory sequencing of codons 72 and 76 revealed two novel allelic sequences SVMIT and RVMNT in addition to the previously identified CVMNT and SVMNT haplotypes. The frequency of the pfcrt K76T despite its presence in both CQR and CQS (chloroquine sensitive) infections measured in vivo and in vitro, suggests that it is a useful population marker in this low-transmission setting of sweeping CQR.
Resumo:
Effect of Aedes fluviatilis saliva on the development of Plasmodium gallinaceum experimental infection in Gallus (gallus) domesticus was studied in distinct aspects. Chickens subcutaneously infected with sporozoites in the presence of the mosquito salivary gland homogenates (SGH) showed higher levels of parasitaemia when compared to those ones that received only the sporozoites. However, the parasitaemia levels were lower among chickens previously immunized by SGH or non-infected mosquito bites compared to the controls, which did not receive saliva. High levels of anti-saliva antibodies were observed in those immunized chickens. Moreover, 53 and 102 kDa saliva proteins were recognized by sera from immunized chickens. After the sporozoite challenge, the chickens also showed significant levels of anti-sporozoite antibodies. However, the ability to generate anti-sporozoites antibodies was not correlated to the saliva immunization. Our results suggest that mosquito saliva components enhance P. gallinaceum parasite development in naive chickens. However, the prior exposure of chickens to salivary components controls the parasitemia levels in infected individuals.
Resumo:
Background. In malaria-endemic areas it is recommended that febrile children be tested for malaria by rapid diagnostic test (RDT) or blood slide (BS) and receive effective malaria treatment only if results are positive. However, RDTs are known to perform less well for Plasmodium vivax. We evaluated the safety of withholding antimalarial drugs from young Papua New Guinean children with negative RDT results in areas with high levels of both Plasmodium falciparum and P. vivax infections. Methods. longitudinal prospective study of children aged 3-27 months visiting outpatient clinics for fever. RDT was administered at first visit. RDT and microscopy were performed if children returned because of persistent symptoms. Outcomes were rates of reattendance and occurrence of severe illnesses. Results. Of 5670 febrile episodes, 3942 (70%) involved a negative RDT result. In 133 cases (3.4%), the children reattended the clinic within 7 days for fever, of whom 29 (0.7%) were parasitemic by RDT or microscopy. Of children who reattended, 24 (0.7%) presented with a severe illness: 2 had lower respiratory tract infections (LRTIs) with low-density P. vivax on BS; 2 received a diagnosis of P. vivax malaria on the basis of RDT but BSs were negative; 16 had LRTIs; 3 had alternative diagnoses. Of these 24, 22 were cured at day 28. Two children died of illnesses other than malaria and were RDT and BS negative at the initial and subsequent visits. Conclusion. Treatment for malaria based on RDT results is safe and feasible even in infants living in areas with moderate to high endemicity for both P. falciparum and P. vivax infections.
Resumo:
In this work we investigated the frequency of polymorphism in exon II of the gene encoding most of the amino-terminal region of the serine rich antigen (SERA) in Plasmodium falciparum field samples. The blood samples were colleted from P. falciparum infected individuals in three areas of the Brazilian Amazon. Two fragments have been characterized by polymerase chain reaction: one of 175 bp corresponding to the repeat region with 5 octamer units and one other of 199 bp related to the 6 repeat octamer units of SERA protein. The 199 bp fragment was the predominant one in all the studied areas. The higher frequency of this fragment has not been described before and could be explained by an immunological selection of the plasmodial population in the infected individuals under study. Since repeat motifs in the amino-terminal region of SERA contain epitopes recognized by parasite-inhibitor antibodies, data reported here suggest that the analysis of the polymorphism of P. falciparum isolates in different geographical areas is a preliminary stage before the final drawing of an universal vaccine against malaria can be reached.