973 resultados para Plant-fungi interactions
Resumo:
Powdery mildews, obligate biotrophic fungal parasites on a wide range of important crops, can be controlled by plant resistance (R) genes, but these are rapidly overcome by parasite mutants evading recognition. It is unknown how this rapid evolution occurs without apparent loss of parasite fitness. R proteins recognize avirulence (AVR) molecules from parasites in a gene-for-gene manner and trigger defense responses. We identify AVRa10 and AVRk1 of barley powdery mildew fungus, Blumeria graminis f sp hordei (Bgh), and show that they induce both cell death and naccessibility when transiently expressed in Mla10 and Mlk1 barley (Hordeum vulgare) varieties, respectively. In contrast with other reported fungal AVR genes, AVRa10 and AVRk1 encode proteins that lack secretion signal peptides and enhance infection success on susceptible host plant cells. AVRa10 and AVRk1 belong to a large family with mayor que30 paralogues in the genome of Bgh, and homologous sequences are present in other formae speciales of the fungus infecting other grasses. Our findings imply that the mildew fungus has a repertoire of AVR genes, which may function as effectors and contribute to parasite virulence. Multiple copies of related but distinct AVR effector paralogues might enable populations of Bgh to rapidly overcome host R genes while maintaining virulence.
Resumo:
Many pathogen recognition genes, such as plant R-genes, undergo rapid adaptive evolution, providing evidence that these genes play a critical role in plant-pathogen coevolution. Surprisingly, whether rapid adaptive evolution also occurs in genes encoding other kinds of plant defense proteins is unknown. Unlike recognition proteins, plant chitinases attack pathogens directly, conferring disease resistance by degrading chitin, a component of fungal cell walls. Here, we show that nonsynonymous substitution rates in plant class I chitinase often exceed synonymous rates in the plant genus Arabis (Cruciferae) and in other dicots, indicating a succession of adaptively driven amino acid replacements. We identify individual residues that are likely subject to positive selection by using codon substitution models and determine the location of these residues on the three-dimensional structure of class I chitinase. In contrast to primate lysozymes and plant class III chitinases, structural and functional relatives of class I chitinase, the adaptive replacements of class I chitinase occur disproportionately in the active site cleft. This highly unusual pattern of replacements suggests that fungi directly defend against chitinolytic activity through enzymatic inhibition or other forms of chemical resistance and identifies target residues for manipulating chitinolytic activity. These data also provide empirical evidence that plant defense proteins not involved in pathogen recognition also evolve in a manner consistent with rapid coevolutionary interactions.
Resumo:
The combined effects of drought stress and grazing pressure on shaping plant–plant interactions are still poorly understood, while this combination is common in arid ecosystems. In this study we assessed the relative effect of grazing pressure and slope aspect (drought stress) on vegetation cover and soil functioning in semi-arid Mediterranean grassland–shrublands in southeastern Spain. Moreover, we linked these two stress factors to plant co-occurrence patterns at species-pair and community levels, by performing C-score analyses. Vegetation cover and soil functioning decreased with higher grazing pressure and more south-facing (drier) slopes. At the community level, plants at south-facing slopes were negatively associated at no grazing but positively associated at low grazing pressure and randomly associated at high grazing pressure. At north-facing slopes, grazing did not result in a shift in the direction of the association. In contrast, analysis of pairwise species co-occurrence patterns showed that the dominant species Stipa tenacissima and Anthyllis cytisoides shifted from excluding each other to co-occurring with increasing grazing pressure at north-facing slopes. Our findings highlight that for improved understanding of plant interactions along stress gradients, interactions between species pairs and interactions at the community level should be assessed, as these may reveal contrasting results.
Resumo:
Mode of access: Internet.
Resumo:
Includes indexes.
Resumo:
Linn.soc.London.Trans.16:151-154. pl.16. 1828.1833.
Resumo:
1. Some of the most damaging invasive plants are dispersed by frugivores and this is an area of emerging importance in weed management. It highlights the need for practical information on how frugivores affect weed population dynamics and spread, how frugivore populations are affected by weeds and what management recommendations are available. 2. Fruit traits influence frugivore choice. Fruit size, the presence of an inedible peel, defensive chemistry, crop size and phenology may all be useful traits for consideration in screening and eradication programmes. By considering the effect of these traits on the probability, quality and quantity of seed dispersal, it may be possible to rank invasive species by their desirability to frugivores. Fruit traits can also be manipulated with biocontrol agents. 3. Functional groups of frugivores can be assembled according to broad species groupings, and further refined according to size, gape size, pre- and post-ingestion processing techniques and movement patterns, to predict dispersal and establishment patterns for plant introductions. 4. Landscape fragmentation can increase frugivore dispersal of invasives, as many invasive plants and dispersers readily use disturbed matrix environments and fragment edges. Dispersal to particular landscape features, such as perches and edges, can be manipulated to function as seed sinks if control measures are concentrated in these areas. 5.Where invasive plants comprise part of the diet of native frugivores, there may be a conservation conflict between control of the invasive and maintaining populations of the native frugivore, especially where other threats such as habitat destruction have reduced populations of native fruit species. 6. Synthesis and applications. Development of functional groups of frugivore-dispersed invasive plants and dispersers will enable us to develop predictions for novel dispersal interactions at both population and community scales. Increasingly sophisticated mechanistic seed dispersal models combined with spatially explicit simulations show much promise for providing weed managers with the information they need to develop strategies for surveying, eradicating and managing plant invasions. Possible conservation conflicts mean that understanding the nature of the invasive plant-frugivore interaction is essential for determining appropriate management.
Resumo:
Three species of filamentous fungi, Botrytis cinerea, Sporotrichum thermophile and Trichoderma viride, have been selected to assess the potential of utilizing filamentous fungi to degrade plant cell biomass produced by mass cell culture techniques. All three fungal species grew comparatively well on plant cell biomass with no requirement for supplementary nutrients. Of the three species assessed B. cinerea demonstrated the most growth. This species also produced the greatest yield of D-glucose. However, when culture conditions were modified, yields of D-glucose were markedly reduced indicating that the combination of species and culture conditions must be thoroughly investigated to ensure maximum product yield. The growth of filamentous fungi on plant cells also markedly affected the nature of the resulting fungal-plant cell residue, increasing the levels of soluble carbohydrates and essential amino acids with the largest increase in these materials being promoted by B. cinerea.
Resumo:
Three species of fungi Sporotrichum thermophile, Botrytis cinerea and Trichoderma viride were assessed for their ability to utilize a variety of plant cell substrates (methanol extracted), Catharanthus roseus, Daucus carota, re-autoclaved C. roseus, re-autoclaved D. carota) which preliminary studies had indicated contained the necessary nutrients for fungal growth. Incubated in a suitable manner all three fungal species were able to grow on C. roseus and D. carota plant cell biomass in addition to material which had undergone methanol extraction or a re-autoclaving process to remove soluble components. Fungal biomass yields were markedly influenced by substrate, with each fungal species demonstrating a preference for particular plant cell material. Incubation conditions i.e. static or shaken and temperature also proved important. Release of glucose (i.e. values higher than Day 0) promoted by fungal breakdown of plant cell biomass was only noted with methanol extracted, re-autoclaved C. roseus and re-autoclaved D. carota material. A re-autoclaved substrate was also generally associated with high fungal C1, Cx, B-glucosidase and endo-polygalacturonase activity. In addition for each enzyme highest values were usually obtained from a particular fungal species. Buffering cultures at pH 3 or 5 further influenced enzyme activity, however in a majority of cases when flasks were unbuffered and the pH rose naturally to alkaline values higher enzyme activity was recorded. Likewise Tween 80 addition had only a limited beneficial effect. Finally filtrates containing glucose produced both from the re-autoclaving process and through fungal activity on plant cell biomass were utilized for Fusarium oxysporum, Saccharomyces cerevisiae and C. roseus plant cell culture. Although reasonable fungal biomass was obtained the use of such filtrates proved unsuitable for plant cell growth.
Resumo:
The freshwater Everglades is a complex system containing thousands of tree islands embedded within a marsh-grassland matrix. The tree island-marsh mosaic is shaped and maintained by hydrologic, edaphic and biological mechanisms that interact across multiple scales. Preserving tree islands requires a more integrated understanding of how scale-dependent phenomena interact in the larger freshwater system. The hierarchical patch dynamics paradigm provides a conceptual framework for exploring multi-scale interactions within complex systems. We used a three-tiered approach to examine the spatial variability and patterning of nutrients in relation to site parameters within and between two hydrologically defined Everglades landscapes: the freshwater Marl Prairie and the Ridge and Slough. Results were scale-dependent and complexly interrelated. Total carbon and nitrogen patterning were correlated with organic matter accumulation, driven by hydrologic conditions at the system scale. Total and bioavailable phosphorus were most strongly related to woody plant patterning within landscapes, and were found to be 3 to 11 times more concentrated in tree island soils compared to surrounding marshes. Below canopy resource islands in the slough were elongated in a downstream direction, indicating soil resource directional drift. Combined multi-scale results suggest that hydrology plays a significant role in landscape patterning and also the development and maintenance of tree islands. Once developed, tree islands appear to exert influence over the spatial distribution of nutrients, which can reciprocally affect other ecological processes.
Resumo:
In vitro experimental environments are used to study interactions between microorganisms, and predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to closely match the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation was studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25oC and 30oC). Competition experiments showed interaction between main effects of aflatoxin accumulation and environment at 25oC, but not so at 30oC. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-hour incubation in different experimental environments. Whereas, all fungi incubated within the soil environment survived; in the cotton-wool environment, none of the competitors of A. flavus survived at 30 oC. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post harvest.