795 resultados para Planning decision support systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As more diagnostic testing options become available to physicians, it becomes more difficult to combine various types of medical information together in order to optimize the overall diagnosis. To improve diagnostic performance, here we introduce an approach to optimize a decision-fusion technique to combine heterogeneous information, such as from different modalities, feature categories, or institutions. For classifier comparison we used two performance metrics: The receiving operator characteristic (ROC) area under the curve [area under the ROC curve (AUC)] and the normalized partial area under the curve (pAUC). This study used four classifiers: Linear discriminant analysis (LDA), artificial neural network (ANN), and two variants of our decision-fusion technique, AUC-optimized (DF-A) and pAUC-optimized (DF-P) decision fusion. We applied each of these classifiers with 100-fold cross-validation to two heterogeneous breast cancer data sets: One of mass lesion features and a much more challenging one of microcalcification lesion features. For the calcification data set, DF-A outperformed the other classifiers in terms of AUC (p < 0.02) and achieved AUC=0.85 +/- 0.01. The DF-P surpassed the other classifiers in terms of pAUC (p < 0.01) and reached pAUC=0.38 +/- 0.02. For the mass data set, DF-A outperformed both the ANN and the LDA (p < 0.04) and achieved AUC=0.94 +/- 0.01. Although for this data set there were no statistically significant differences among the classifiers' pAUC values (pAUC=0.57 +/- 0.07 to 0.67 +/- 0.05, p > 0.10), the DF-P did significantly improve specificity versus the LDA at both 98% and 100% sensitivity (p < 0.04). In conclusion, decision fusion directly optimized clinically significant performance measures, such as AUC and pAUC, and sometimes outperformed two well-known machine-learning techniques when applied to two different breast cancer data sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Higher Education web-based course support systems are essential for supporting flexible learning environments. They provide tools to enable the interaction between student and tutor to reinforce transfer of theory to understanding particularly in an academic environment, therefore this paper will examine issues associated with the use of curriculum and learning resources within Web-based course support systems and the effectiveness of the resulting flexible learning environments This paper is a general discussion about flexible learning and in this case how it was applied to one of the courses at undergraduate level one. The first section will introduce what is flexible learning and the importance of flexible learning in Higher Education followed by the description of the course and why the flexible learning concepts is important in such a course and finally, how the flexibility was useful for this particular instance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ready-to-eat (RTE) foods can be readily consumed with minimum or without any further preparation; their processing is complex—involving thorough decontamination processes— due to their composition of mixed ingredients. Compared with conventional preservation technologies, novel processing technologies can enhance the safety and quality of these complex products by reducing the risk of pathogens and/ or by preserving related health-promoting compounds. These novel technologies can be divided into two categories: thermal and non-thermal. As a non-thermal treatment, High Pressure Processing is a very promising novel methodology that can be used even in the already packaged RTE foods. A new “volumetric” microwave heating technology is an interesting cooking and decontamination method directly applied to foods. Cold Plasma technology is a potential substitute of chlorine washing in fresh vegetable decontamination. Ohmic heating is a heating method applicable to viscous products but also to meat products. Producers of RTE foods have to deal with challenging decisions starting from the ingredients suppliers to the distribution chain. They have to take into account not only the cost factor but also the benefits and food products’ safety and quality. Novel processing technologies can be a valuable yet large investment for several SME food manufacturers, but they need support data to be able to make adequate decisions. Within the FP7 Cooperation funded by the European Commission, the STARTEC project aims to develop an IT decision supporting tool to help food business operators in their risk assessment and future decision making when producing RTE foods with or without novel preservation technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, an automatic Smart Irrigation Decision Support System, SIDSS, is proposed to manage irrigation in agriculture. Our system estimates the weekly irrigations needs of a plantation, on the basis of both soil measurements and climatic variables gathered by several autonomous nodes deployed in field. This enables a closed loop control scheme to adapt the decision support system to local perturbations and estimation errors. Two machine learning techniques, PLSR and ANFIS, are proposed as reasoning engine of our SIDSS. Our approach is validated on three commercial plantations of citrus trees located in the South-East of Spain. Performance is tested against decisions taken by a human expert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.