725 resultados para Piggery Manure
Resumo:
Since 1970 when Sultan Qaboos bin Said Al Said took over power from this father, agriculture in Oman has undergone major transformations as a consequence of rapid population and economic growth. In this process groundwater extraction has dramatically increased to meet domestic and agricultural needs. Recently, the agro-ecosystem of ancient mountain oases of Oman have received greater attention as interest has grown to understand the causes of their often millennia old sustainable productivity. Particularly little is known about the carbon (C) and nutrient turnover in these intensive landuse systems. This is partly due to the difficulties to measure such processes in the often remote fields. To fill the existing gap of knowledge, field studies were conducted in five oases at different altitudes of Al Jabal Al Akhdar, the highest agricultural area in Oman, to determine C and nutrient fluxes as well as nutrient use efficiencies for two different cropping systems as affected by temperature, irrigation, and manure quality. The results of this study indicated that water scarcity as a result of low precipitation and an increase in urban water consumption is a major threat to the sustainability of agriculture in these oases. Optimizing the use of irrigation water is a major challenge for agriculture in these oases, particularly given ever increasing competition for this most limiting resource. Traditionally, farmers of these oases adapt to variation of irrigation water supply by minimizing the growing area of annual crops, leaving these areas uncultivated through drought seasons (Luedeling and Buerkert 2008). In this study, a remarkable reduction in annual crop area was observed in 2009 for all oases. Our results suggested that water scarcity as a result of low precipitation and the increase in urban water consumption cause such changes in land use. The data also underline the intensive C and nutrient turnover in the man-made irrigated agroecosystems and confirmed the importance of the large manure quantities applied continuously to the terraces as a key factor responsible for sustainable soil productivity. To trace the fate of C and plant nutrients that are released from the large amount of manure applied by oasis farmers, more detailed studies under controlled conditions, using isotope signatures, would be needed.
Resumo:
Agro-ecological resource use pattern in a traditional hill agricultural watershed in Garhwal Himalaya was analysed along an altitudinal transect. Thirty one food crops were found, although only 0.5% agriculture land is under irrigation in the area. Fifteen different tree species within agroforestry systems were located and their density varied from 30-90 trees/ha. Grain yield, fodder from agroforest trees and crop residue were observed to be highest between 1200 and 1600 m a.s.l. Also the annual energy input- output ratio per hectare was highest between 1200 and 1600 m a.s.l. (1.46). This higher input- output ratio between 1200-1600 m a.s.l. was attributed to the fact that green fodder, obtained from agroforestry trees, was considered as farm produce. The energy budget across altitudinal zones revealed 95% contribution of the farmyard manure and the maximum output was in terms of either crop residue (35%) or fodder (55%) from the agroforestry component. Presently on average 23%, 29% and 41% cattle were dependent on stall feeding in villages located at higher, lower and middle altitudes respectively. Similarly, fuel wood consumption was greatly influenced by altitude and family size. The efficiency and sustainability of the hill agroecosystem can be restored by strengthening of the agroforestry component. The approach will be appreciated by the local communities and will readily find their acceptance and can ensure their effective participation in the programme.
Resumo:
The use of renewable primary products as co-substrate or single substrate for biogas production has increased consistently over the last few years. Maize silage is the preferential energy crop used for fermentation due to its high methane (CH4) yield per hectare. Equally, the by-product, namely biogas slurry (BS), is used with increasing frequency as organic fertilizer to return nutrients to the soil and to maintain or increase the organic matter stocks and soil fertility. Studies concerning the application of energy crop-derived BS on the carbon (C) and nitrogen (N) mineralization dynamics are scarce. Thus, this thesis focused on the following objectives: I) The determination of the effects caused by rainfall patterns on the C and N dynamics from two contrasting organic fertilizers, namely BS from maize silage and composted cattle manure (CM), by monitoring emissions of nitrous oxide (N2O), carbon dioxide (CO2) and CH4 as well as leaching losses of C and N. II) The investigation of the impact of differences in soil moisture content after the application of BS and temperature on gaseous emissions (CO2, N2O and CH4) and leaching of C and N compounds. III) A comparison of BS properties obtained from biogas plants with different substrate inputs and operating parameters and their effect on C and N dynamics after application to differently textured soils with varying application rates and water contents. For the objectives I) and II) two experiments (experiment I and II) using undisturbed soil cores of a Haplic Luvisol were carried out. Objective III) was studied on a third experiment (experiment III) with disturbed soil samples. During experiment I three rainfall patterns were implemented including constant irrigation, continuous irrigation with periodic heavy rainfall events, and partial drying with rewetting periods. Biogas slurry and CM were applied at a rate of 100 kg N ha-1. During experiment II constant irrigation and an irrigation pattern with partial drying with rewetting periods were carried out at 13.5°C and 23.5°C. The application of BS took place either directly before a rewetting period or one week after the rewetting period stopped. Experiment III included two soils of different texture which were mixed with ten BS’s originating from ten different biogas plants. Treatments included low, medium and high BS-N application rates and water contents ranging from 50% to 100% of water holding capacity (WHC). Experiment I and II showed that after the application of BS cumulative N2O emissions were 4 times (162 mg N2O-N m-2) higher compared to the application of CM caused by a higher content of mineral N (Nmin) in the form of ammonium (NH4+) in the BS. The cumulative emissions of CO2, however, were on the same level for both fertilizers indicating similar amounts of readily available C after composting and fermentation of organic material. Leaching losses occurred predominantly in the mineral form of nitrate (NO3-) and were higher in BS amended soils (9 mg NO3--N m-2) compared to CM amended soils (5 mg NO3--N m-2). The rainfall pattern in experiment I and II merely affected the temporal production of C and N emissions resulting in reduced CO2 and enhanced N2O emissions during stronger irrigation events, but showed no effect on the cumulative emissions. Overall, a significant increase of CH4 consumption under inconstant irrigation was found. The time of fertilization had no effect on the overall C and N dynamics. Increasing temperature from 13.5°C to 23.5°C enhanced the CO2 and N2O emissions by a factor of 1.7 and 3.7, respectively. Due to the increased microbial activity with increasing temperature soil respiration was enhanced. This led to decreasing oxygen (O2) contents which in turn promoted denitrification in soil due to the extension of anaerobic microsites. Leaching losses of NO3- were also significantly affected by increasing temperature whereas the consumption of CH4 was not affected. The third experiment showed that the input materials of biogas plants affected the properties of the resulting BS. In particular the contents of DM and NH4+ were determined by the amount of added plant biomass and excrement-based biomass, respectively. Correlations between BS properties and CO2 or N2O emissions were not detected. Solely the ammonia (NH3) emissions showed a positive correlation with NH4+ content in BS as well as a negative correlation with the total C (Ct) content. The BS-N application rates affected the relative CO2 emissions (% of C supplied with BS) when applied to silty soil as well as the relative N2O emissions (% of N supplied with BS) when applied to sandy soil. The impacts on the C and N dynamics induced by BS application were exceeded by the differences induced by soil texture. Presumably, due to the higher clay content in silty soils, organic matter was stabilized by organo-mineral interactions and NH4+ was adsorbed at the cation exchange sites. Different water contents induced highest CO2 emissions and therefore optimal conditions for microbial activity at 75% of WHC in both soils. Cumulative nitrification was also highest at 75% and 50% of WHC whereas the relative N2O emissions increased with water content and showed higher N2O losses in sandy soils. In summary it can be stated that the findings of the present thesis confirmed the high fertilizer value of BS’s, caused by high concentrations of NH4+ and labile organic compounds such as readily available carbon. These attributes of BS’s are to a great extent independent of the input materials of biogas plants. However, considerably gaseous and leaching losses of N may occur especially at high moisture contents. The emissions of N2O after field application corresponded with those of animal slurries.
Resumo:
The Sultanate of Oman is located on the south-eastern coast of the Arabian Peninsula, which lies on the south-western tip of the Asian continent. The strategic geographical locations of the Sultanate with its many maritime ports distributed on the Indian Ocean have historically made it one of the Arabian Peninsula leaders in the international maritime trade sector. Intensive trading relationships over long time periods have contributed to the high plant diversity seen in Oman where agricultural production depends entirely on irrigation from groundwater sources. As a consequence of the expansion of the irrigated area, groundwater depletion has increased, leading to the intrusion of seawater into freshwater aquifers. This phenomenon has caused water and soil salinity problems in large parts of the Al-Batinah governorate of Oman and threatens cultivated crops, including banana (Musa spp.). According to the Ministry of Agriculture and Fisheries, the majority of South Al-Batinah farms are affected by salinity (ECe > 4 dS m-1). As no alternative farmland is available, the reclamation of salt-affected soils using simple cultural practices is of paramount importance, but in Oman little scientific research has been conducted to develop such methods of reclamation. This doctoral study was initiated to help filling this research gap, particularly for bananas. A literature review of the banana cultivation history revealed that the banana germplasm on the Arabian Peninsula is probably introduced from Indonesia and India via maritime routes across the Indian Ocean and the Red Sea. In a second part of this dissertation, two experiments are described. A laboratory trial conducted at the University of Kassel, in Witzenhausen, Germany from June to July 2010. This incubation experiment was done to explore how C and N mineralization of composted dairy manure and date palm straw differed in alkaline non-saline and saline soils. Each soil was amended with four organic fertilizers: 1) composted dairy manure, 2) manure + 10% date palm straw, 3) manure + 30% date palm straw or 4) date palm straw alone, in addition to un-amended soils as control. The results showed that the saline soil had a lower soil organic C content and microbial biomass C than the non-saline soil. This led to lower mineralization rates of manure and date palm straw in the saline soil. In the non-saline soil, the application of manure and straw resulted in significant increases of CO2 emissions, equivalent to 2.5 and 30% of the added C, respectively. In the non-amended control treatment of the saline soil, the sum of CO2-C reached only 55% of the soil organic C in comparison with the non-saline soil. In which 66% of the added manure and 75% of the added straw were emitted, assuming that no interactions occurred between soil organic C, manure C and straw C during microbial decomposition. The application of straw always led to a net N immobilization compared to the control. Salinity had no specific effect on N mineralization as indicated by the CO2-C to Nmin ratio of soil organic matter and manure. However, N immobilization was markedly stronger in the saline soil. Date palm straw strongly promoted saprotrophic fungi in contrast to manure and the combined application of manure and date palm straw had synergistic positive effects on soil microorganisms. In the last week of incubation, net-N mineralization was observed in nearly all treatments. The strongest increase in microbial biomass C was observed in the manure + straw treatment. In both soils, manure had no effect on the fungi-specific membrane component ergosterol. In contrast, the application of straw resulted in strong increases of the ergosterol content. A field experiment was conducted on two adjacent fields at the Agricultural Research Station, Rumais (23°41’15” N, 57°59’1” E) in the South of Al-Batinah Plain in Oman from October 2007 to July 2009. In this experiment, the effects of 24 soil and fertilizer treatments on the growth and productivity of Musa AAA cv. 'Malindi' were evaluated. The treatments consisted of two soil types (saline and amended non-saline), two fertilizer application methods (mixed and ring applied), six fertilizer amendments (1: fresh dairy manure, 2: composted dairy manure, 3: composted dairy manure and 10% date palm straw, 4: composted dairy manure and 30% date palm straw, 5: only NPK, and 6: NPK and micronutrients). Sandy loam soil was imported from another part of Oman to amended the soil in the planting holes and create non-saline conditions in the root-zone. The results indicate that replacing the saline soil in the root zone by non-saline soil improved plant growth and yield more than fertilizer amendments or application methods. Particularly those plants on amended soil where NPK was applied using the ring method and which received micronutrients grew significantly faster to harvest (339 days), had a higher average bunch weight (9.5 kg/bunch) and were consequently more productive (10.6 tonnes/hectare/cycle) compared to the other treatments.
Resumo:
With Chinas rapid economic development during the last decades, the national demand for livestock products has quadrupled within the last 20 years. Most of that increase in demand has been answered by subsidized industrialized production systems, while million of smallholders, which still provide the larger share of livestock products in the country, have been neglected. Fostering those systems would help China to lower its strong urban migration streams, enhance the livelihood of poorer rural population and provide environmentally save livestock products which have a good chance to satisfy customers demand for ecological food. Despite their importance, China’s smallholder livestock keepers have not yet gained appropriate attention from governmental authorities and researchers. However, profound analysis of those systems is required so that adequate support can lead to a better resource utilization and productivity in the sector. To this aim, this pilot study analyzes smallholder livestock production systems in Xishuangbanna, located in southern China. The area is bordered by Lao and Myanmar and geographically counts as tropical region. Its climate is characterized by dry and temperate winters and hot summers with monsoon rains from May to October. While the regionis plain, at about 500 m asl above sea level in the south, outliers of the Himalaya mountains reach out into the north of Xishuangbanna, where the highest peak reaches 2400 m asl. Except of one larger city, Jinghong, Xishuangbanna mainly is covered by tropical rainforest, areas under agricultural cultivation and villages. The major income is generated through inner-Chinese tourism and agricultural production. Intensive rubber plantations are distinctive for the lowland plains while small-scaled traditional farms are scattered in the mountane regions. In order to determine the current state and possible future chances of smallholder livestock production in that region, this study analyzed the current status of the smallholder livestock sector in the Naban River National Nature Reserve (NRNNR), an area which is largely representative for the whole prefecture. It covers an area of about 50square kilometer and reaches from 470 up to 2400 m asl. About 5500 habitants of different ethnic origin are situated in 24 villages. All data have been collected between October 2007 and May 2010. Three major objectives have been addressed in the study: 1. Classifying existing pig production systems and exploring respective pathways for development 2. Quantifying the performance of pig breeding systemsto identify bottlenecks for production 3. Analyzing past and current buffalo utilization to determine the chances and opportunities of buffalo keeping in the future In order to classify the different pig production s ystems, a baseline survey (n=204, stratified cluster sampling) was carried out to gain data about livestock species, numbers, management practices, cultivated plant species and field sizes as well associo-economic characteristics. Sampling included two clusters at village level (altitude, ethnic affiliation), resulting in 13 clusters of which 13-17 farms were interviewed respectively. Categorical Principal Component Analysis (CatPCA) and a two-step clustering algorithm have been applied to identify determining farm characteristics and assort recorded households into classes of livestock production types. The variables keep_sow_yes/no, TLU_pig, TLU_buffalo, size_of_corn_fields, altitude_class, size_of_tea_plantationand size_of_rubber_fieldhave been found to be major determinants for the characterization of the recorded farms. All farms have extensive or semi-intensive livestock production, pigs and buffaloes are predominant livestock species while chicken and aquaculture are available but play subordinate roles for livelihoods. All pig raisers rely on a single local breed, which is known as Small Ear Pig (SMEP) in the region. Three major production systemshave been identified: Livestock-corn based LB; 41%), rubber based (RB; 39%) and pig based (PB;20%) systems. RB farms earn high income from rubber and fatten 1.9 ±1.80 pigs per household (HH), often using purchased pig feed at markets. PB farms own similar sized rubber plantations and raise 4.7 ±2.77 pigs per HH, with fodder mainly being cultivated and collected in theforest. LB farms grow corn, rice and tea and keep 4.6 ±3.32 pigs per HH, also fed with collected and cultivated fodder. Only 29% of all pigs were marketed (LB: 20%; RB: 42%; PB: 25%), average annual mortality was 4.0 ±4.52 pigs per farm (LB: 4.6 ±3.68; RB: 1.9 ±2.14; PB: 7.1 ±10.82). Pig feed mainly consists of banana pseudo stem, corn and rice hives and is prepared in batches about two to three times per week. Such fodder might be sufficient in energy content but lacks appropriate content of protein. Pigs therefore suffer from malnutrition, which becomes most critical in the time before harvest season around October. Farmers reported high occurrences of gastrointestinal parasites in carcasses and often pig stables were wet and filled with manure. Deficits in nutritional and hygienic management are major limits for development and should be the first issues addressed to improve productivity. SME pork was found to be known and referred by local customers in town and by richer lowland farmers. However, high prices and lacking availability of SME pork at local wet-markets were the reasons which limited purchase. If major management constraints are overcome, pig breeders (PB and LB farms) could increase the share of marketed pigs for town markets and provide fatteners to richer RB farmers. RB farmers are interested in fattening pigs for home consumption but do not show any motivation for commercial pig raising. To determine the productivity of input factors in pig production, eproductive performance, feed quality and quantity as well as weight development of pigs under current management were recorded. The data collection included a progeny history survey covering 184 sows and 437 farrows, bi-weekly weighing of 114 pigs during a 16-months time-span on 21 farms (10 LB and 11 PB) as well as the daily recording of feed quality and quantity given to a defined number of pigs on the same 21 farms. Feed samples of all recorded ingredients were analyzed for their respective nutrient content. Since no literature values on thedigestibility of banana pseudo stem – which is a major ingredient of traditional pig feed in NRNNR – were found, a cross-sectional digestibility trial with 2x4 pigs has been conducted on a station in the research area. With the aid of PRY Herd Life Model, all data have been utilized to determine thesystems’ current (Status Quo = SQ) output and the productivity of the input factor “feed” in terms of saleable life weight per kg DM feed intake and monetary value of output per kg DM feed intake.Two improvement scenarios were simulated, assuming 1) that farmers adopt a culling managementthat generates the highest output per unit input (Scenario 1; SC I) and 2) that through improved feeding, selected parameters of reproduction are improved by 30% (SC II). Daily weight gain averaged 55 ± 56 g per day between day 200 and 600. The average feed energy content of traditional feed mix was 14.92 MJ ME. Age at first farrowing averaged 14.5 ± 4.34 months, subsequent inter-farrowing interval was 11.4 ± 2.73 months. Littersize was 5.8 piglets and weaning age was 4.3 ± 0.99 months. 18% of piglets died before weaning. Simulating pig production at actualstatus, it has been show that monetary returns on inputs (ROI) is negative (1:0.67), but improved (1:1.2) when culling management was optimized so that highest output is gained per unit feed input. If in addition better feeding, controlled mating and better resale prices at fixed dates were simulated, ROI further increased to 1:2.45, 1:2.69, 1:2.7 and 1:3.15 for four respective grower groups. Those findings show the potential of pork production, if basic measures of improvement are applied. Futureexploration of the environment, including climate, market-season and culture is required before implementing the recommended measures to ensure a sustainable development of a more effective and resource conserving pork production in the future. The two studies have shown that the production of local SME pigs plays an important role in traditional farms in NRNNR but basic constraints are limiting their productivity. However, relatively easy approaches are sufficient for reaching a notable improvement. Also there is a demand for more SME pork on local markets and, if basic constraints have been overcome, pig farmers could turn into more commercial producers and provide pork to local markets. By that, environmentally safe meat can be offered to sensitive consumers while farmers increase their income and lower the risk of external shocks through a more diverse income generating strategy. Buffaloes have been found to be the second important livestock species on NRNNR farms. While they have been a core resource of mixed smallholderfarms in the past, the expansion of rubber tree plantations and agricultural mechanization are reasons for decreased swamp buffalo numbers today. The third study seeks to predict future utilization of buffaloes on different farm types in NRNNR by analyzing the dynamics of its buffalo population and land use changes over time and calculating labor which is required for keeping buffaloes in view of the traction power which can be utilized for field preparation. The use of buffaloes for field work and the recent development of the egional buffalo population were analyzed through interviews with 184 farmers in 2007/2008 and discussions with 62 buffalo keepers in 2009. While pig based farms (PB; n=37) have abandoned buffalo keeping, 11% of the rubber based farms (RB; n=71) and 100% of the livestock-corn based farms (LB; n=76) kept buffaloes in 2008. Herd size was 2.5 ±1.80 (n=84) buffaloes in early 2008 and 2.2 ±1.69 (n=62) in 2009. Field work on own land was the main reason forkeeping buffaloes (87.3%), but lending work buffaloes to neighbors (79.0%) was also important. Other purposes were transport of goods (16.1%), buffalo trade (11.3%) and meat consumption(6.4%). Buffalo care required 6.2 ±3.00 working hours daily, while annual working time of abuffalo was 294 ±216.6 hours. The area ploughed with buffaloes remained constant during the past 10 years despite an expansion of land cropped per farm. Further rapid replacement of buffaloes by tractors is expected in the near future. While the work economy is drastically improved by the use of tractors, buffaloes still can provide cheap work force and serve as buffer for economic shocks on poorer farms. Especially poor farms, which lack alternative assets that could quickly be liquidizedin times of urgent need for cash, should not abandon buffalo keeping. Livestock has been found to be a major part of small mixed farms in NRNNR. The general productivity was low in both analyzed species, buffaloes and pigs. Productivity of pigs can be improved through basic adjustments in feeding, reproductive and hygienic management, and with external support pig production could further be commercialized to provide pork and weaners to local markets and fattening farms. Buffalo production is relatively time intensive, and only will be of importance in the future to very poor farms and such farms that cultivate very small terraces on steep slopes. These should be encouraged to further keep buffaloes. With such measures, livestock production in NRNNR has good chances to stay competitive in the future.
Resumo:
Vor dem Hintergund der Integration des wissensbasierten Managementsystems Precision Farming in den Ökologischen Landbau wurde die Umsetzung bestehender sowie neu zu entwickelnder Strategien evaluiert und diskutiert. Mit Blick auf eine im Precision Farming maßgebende kosteneffiziente Ertragserfassung der im Ökologischen Landbau flächenrelevanten Leguminosen-Grasgemenge wurden in zwei weiteren Beiträgen die Schätzgüten von Ultraschall- und Spektralsensorik in singulärer und kombinierter Anwendung analysiert. Das Ziel des Precision Farming, ein angepasstes Management bezogen auf die flächeninterne Variabilität der Standorte umzusetzen, und damit einer Reduzierung von Betriebsmitteln, Energie, Arbeit und Umwelteffekten bei gleichzeitiger Effektivitätssteigerung und einer ökonomischen Optimierung zu erreichen, deckt sich mit wesentlichen Bestrebungen im Ökogischen Landbau. Es sind vorrangig Maßnahmen zur Erfassung der Variabilität von Standortfaktoren wie Geländerelief, Bodenbeprobung und scheinbare elektrische Leitfähigkeit sowie der Ertragserfassung über Mähdrescher, die direkt im Ökologischen Landbau Anwendung finden können. Dagegen sind dynamisch angepasste Applikationen zur Düngung, im Pflanzenschutz und zur Beseitigung von Unkräutern aufgrund komplexer Interaktionen und eines eher passiven Charakters dieser Maßnahmen im Ökologischen Landbau nur bei Veränderung der Applikationsmodelle und unter Einbindung weiterer dynamischer Daten umsetzbar. Beispiele hiefür sind einzubeziehende Mineralisierungsprozesse im Boden und organischem Dünger bei der Düngemengenberechnung, schwer ortsspezifisch zuzuordnende präventive Maßnamen im Pflanzenschutz sowie Einflüsse auf bodenmikrobiologische Prozesse bei Hack- oder Striegelgängen. Die indirekten Regulationsmechanismen des Ökologischen Landbaus begrenzen daher die bisher eher auf eine direkte Wirkung ausgelegten dynamisch angepassten Applikationen des konventionellen Precision Farming. Ergänzend sind innovative neue Strategien denkbar, von denen die qualitätsbezogene Ernte, der Einsatz hochsensibler Sensoren zur Früherkennung von Pflanzenkrankheiten oder die gezielte teilflächen- und naturschutzorientierte Bewirtschaftung exemplarisch in der Arbeit vorgestellt werden. Für die häufig große Flächenanteile umfassenden Leguminosen-Grasgemenge wurden für eine kostengünstige und flexibel einsetzbare Ertragserfassung die Ultraschalldistanzmessung zur Charakterisierung der Bestandeshöhe sowie verschiedene spektrale Vegetationsindices als Schätzindikatoren analysiert. Die Vegetationsindices wurden aus hyperspektralen Daten nach publizierten Gleichungen errechnet sowie als „Normalized Difference Spectral Index“ (NDSI) stufenweise aus allen möglichen Wellenlängenkombinationen ermittelt. Die Analyse erfolgte für Ultraschall und Vegetationsindices in alleiniger und in kombinierter Anwendung, um mögliche kompensatorische Effekte zu nutzen. In alleiniger Anwendung erreichte die Ultraschallbestandeshöhe durchweg bessere Schätzgüten, als alle einzelnen Vegetationsindices. Bei den letztgenannten erreichten insbesondere auf Wasserabsorptionsbanden basierende Vegetationsindices eine höhere Schätzgenauigkeit als traditionelle Rot/Infrarot-Indices. Die Kombination beider Sensorda-ten ließ eine weitere Steigerung der Schätzgüte erkennen, insbesondere bei bestandesspezifischer Kalibration. Hierbei kompensieren die Vegetationsindices Fehlschätzungen der Höhenmessung bei diskontinuierlichen Bestandesdichtenänderungen entlang des Höhengradienten, wie sie beim Ährenschieben oder durch einzelne hochwachsende Arten verursacht werden. Die Kombination der Ultraschallbestandeshöhe mit Vegetationsindices weist das Potential zur Entwicklung kostengünstiger Ertragssensoren für Leguminosen-Grasgemenge auf. Weitere Untersuchungen mit hyperspektralen Vegetationsindices anderer Berechnungstrukturen sowie die Einbindung von mehr als zwei Wellenlängen sind hinsichtlich der Entwicklung höherer Schätzgüten notwendig. Ebenso gilt es, Kalibrierungen und Validationen der Sensorkombination im artenreichen Grasland durchzuführen. Die Ertragserfassung in den Leguminosen-Grasgemengen stellt einen wichtigen Beitrag zur Erstellung einer Ertragshistorie in den vielfältigen Fruchtfolgen des Ökologischen Landbaus dar und ermöglicht eine verbesserte Einschätzung von Produktionspotenzialen und Defizitarealen für ein standortangepasstes Management.
Resumo:
Inadequate links between researchers and farmers has resulted in low uptake of research advances recommended to improve food security in the central highlands of Kenya. Access to timely and accurate information by extension agents and farmers is paramount in dissemination of soil fertility management practices. Hence, the study sought to investigate the effect of education levels on communication channels used to disseminate soil fertility technologies in the Central highlands of Kenya. Questionnaires were used to elicit information from 105 extension agents and 240 farmers. About 50.5% of the extension officers were certificate holders while 29.5% were diploma holders from agricultural institutes. Majority of the farmers had attained primary education (59.6%) while 25.8% and 9.2% had attained secondary and post secondary education, respectively. Research institutions were the most accessible sources of information on soil fertility management practices by extension agents while internet and scientific conferences were the least scored as accessible sources of soil fertility management information by extension agents. Education levels significantly influenced preference of individual approach methods by farmers. There was a significant positive relationship between education and accessibility of internet as a source of information on green manure. The implication of the study was that education levels influenced the mode of communication used in the transfer of soil fertility research outputs to the end users. Consequently, it is extremely important to consider education levels in selection of dissemination pathways used in agriculture.
Resumo:
Agricultural systems with conventional tillage and intensive use of agrochemicals, especially those on high slopes and with shallow soils, have the potential to release pollutants. This study aimed at evaluating the soil, water and nutrient lost via agricultural runoff in large plots (small catchments) under conventional and organic farming of vegetables as well as under forest (control) system in a Cambisol in the Campestre catchment. Samples of runoff were collected biweekly for one year through a Coshocton wheel. The soil and water losses from the conventional farming were 218 and 6 times higher, respectively, than forest. Under organic farming the soil and water losses were 12 and 4 times higher, respectively, than forest. However the soil losses (0.5 to 114 kg ha^(−1) year^(−1)) are considered low in agronomy but environmentally represent a potential source of surface water contamination by runoff associated pollutants. The concentrations and losses of all forms of phosphorus (P) were higher in the conventional system (9.5, 0.9 and 0.3 mg L^(−1) of total P for conventional, organic and forest systems, respectively), while the organic system had the highest concentrations and losses of soluble nitrogen (4.7, 38.6 and 0.4 mg L^(−1) of NO_3-N, respectively). The percentage of bioavailable P was proportionally higher in the organic system (91% of total P lost was as bioavailable P), indicating greater potential for pollution in the short term.
Resumo:
Das Mahafaly Plateau im südwestlichen Madagaskar ist gekennzeichnet durch raue klimatische Bedingungen, vor allem regelmäßige Dürren und Trockenperioden, geringe Infrastruktur, steigende Unsicherheit, hohe Analphabetenrate und regelmäßige Zerstörung der Ernte durch Heuschreckenplagen. Da 97% der Bevölkerung von der Landwirtschaft abhängen, ist eine Steigerung der Produktivität von Anbausystemen die Grundlage für eine Verbesserung der Lebensbedingungen und Ernährungssicherheit in der Mahafaly Region. Da wenig über die Produktivität von traditionellen extensiven und neu eingeführten Anbaumethoden in diesem Gebiet bekannt ist, waren die Zielsetzungen der vorliegenden Arbeit, die limitierenden Faktoren und vielversprechende alternative Anbaumethoden zu identifizieren und diese unter Feldbedingungen zu testen. Wir untersuchten die Auswirkungen von lokalem Viehmist und Holzkohle auf die Erträge von Maniok, der Hauptanbaufrucht der Region, sowie die Beiträge von weiteren Faktoren, die im Untersuchungsgebiet ertragslimitierend sind. Darüber hinaus wurde in der Küstenregion das Potenzial für bewässerten Gemüseanbau mit Mist und Holzkohle untersucht, um zu einer Diversifizierung von Einkommen und Ernährung beizutragen. Ein weiterer Schwerpunkt dieser Arbeit war die Schätzung von Taubildung und deren Beitrag in der Jahreswasserbilanz durch Testen eines neu entworfenen Taumessgerätes. Maniok wurde über drei Jahre und in drei Versuchsfeldern in zwei Dörfern auf dem Plateau angebaut, mit applizierten Zeburindermistraten von 5 und 10 t ha-1, Holzkohleraten von 0,5 und 2 t ha-1 und Maniokpflanzdichten von 4500 Pflanzen ha-1. Maniokknollenerträge auf Kontrollflächen erreichten 1 bis 1,8 t Trockenmasse (TM) ha-1. Mist führte zu einer Knollenertragssteigerung um 30 - 40% nach drei Jahren in einem kontinuierlich bewirtschafteten Feld mit geringer Bodenfruchtbarkeit, hatte aber keinen Effekt auf den anderen Versuchsfeldern. Holzkohle hatte keinen Einfluss auf Erträge über den gesamten Testzeitraum, während die Infektion mit Cassava-Mosaikvirus zu Ertragseinbußen um bis zu 30% führte. Pflanzenbestände wurden felder-und jahresübergreifend um 4-54% des vollen Bestandes reduziert, was vermutlich auf das Auftreten von Trockenperioden und geringe Vitalität von Pflanzmaterial zurückzuführen ist. Karotten (Daucus carota L. var. Nantaise) und Zwiebeln (Allium cepa L. var. Red Créole) wurden über zwei Trockenzeiten mit lokal erhältlichem Saatgut angebaut. Wir testeten die Auswirkungen von lokalem Rindermist mit einer Rate von 40 t ha-1, Holzkohle mit einer Rate von 10 t ha-1, sowie Beschattung auf die Gemüseernteerträge. Lokale Bewässerungswasser hatte einen Salzgehalt von 7,65 mS cm-1. Karotten- und Zwiebelerträge über Behandlungen und Jahre erreichten 0,24 bis 2,56 t TM ha-1 beziehungsweise 0,30 bis 4,07 DM t ha-1. Mist und Holzkohle hatten keinen Einfluss auf die Erträge beider Kulturen. Beschattung verringerte Karottenerträge um 33% im ersten Jahr, während sich die Erträge im zweiten Jahr um 65% erhöhten. Zwiebelerträge wurden unter Beschattung um 148% und 208% im ersten und zweiten Jahr erhöht. Salines Bewässerungswasser sowie Qualität des lokal verfügbaren Saatgutes reduzierten die Keimungsraten deutlich. Taubildung im Küstendorf Efoetsy betrug 58,4 mm und repräsentierte damit 19% der Niederschlagsmenge innerhalb des gesamten Beobachtungszeitraum von 18 Monaten. Dies weist darauf hin, dass Tau in der Tat einen wichtigen Beitrag zur jährlichen Wasserbilanz darstellt. Tageshöchstwerte erreichten 0,48 mm. Die getestete Tauwaage-Vorrichtung war in der Lage, die nächtliche Taubildung auf der metallischen Kondensationsplatte zuverlässig zu bestimmen. Im abschließenden Kapitel werden die limitierenden Faktoren für eine nachhaltige Intensivierung der Landwirtschaft in der Untersuchungsregion diskutiert.
Resumo:
Short summary: This study was undertaken to assess the diversity of plant resources utilized by the local population in south-western Madagascar, the social, ecological and biophysical conditions that drive their uses and availability, and possible alternative strategies for their sustainable use in the region. The study region, ‘Mahafaly region’, located in south-western Madagascar, is one of the country’s most economically, educationally and climatically disadvantaged regions. With an arid steppe climate, the agricultural production is limited by low water availability and a low level of soil nutrients and soil organic carbon. The region comprises the recently extended Tsimanampetsotsa National Park, with numerous sacred and communities forests, which are threatened by slash and burn agriculture and overexploitation of forests resources. The present study analyzed the availability of wild yams and medicinal plants, and their importance for the livelihood of the local population in this region. An ethnobotanical survey was conducted recording the diversity, local knowledge and use of wild yams and medicinal plants utilized by the local communities in five villages in the Mahafaly region. 250 households were randomly selected followed by semi-structured interviews on the socio-economic characteristics of the households. Data allowed us to characterize sociocultural and socioeconomic factors that determine the local use of wild yams and medicinal plants, and to identify their role in the livelihoods of local people. Species-environment relationships and the current spatial distribution of the wild yams were investigated and predicted using ordination methods and a niche based habitat modelling approach. Species response curves along edaphic gradients allowed us to understand the species requirements on habitat conditions. We thus investigated various alternative methods to enhance the wild yam regeneration for their local conservation and their sustainable use in the Mahafaly region. Altogether, six species of wild yams and a total of 214 medicinal plants species from 68 families and 163 genera were identified in the study region. Results of the cluster and discriminant analysis indicated a clear pattern on resource, resulted in two groups of household and characterized by differences in livestock numbers, off-farm activities, agricultural land and harvests. A generalized linear model highlighted that economic factors significantly affect the collection intensity of wild yams, while the use of medicinal plants depends to a higher degree on socio-cultural factors. The gradient analysis on the distribution of the wild yam species revealed a clear pattern for species habitats. Species models based on NPMR (Nonparametric Multiplicative Regression analysis) indicated the importance of vegetation structure, human interventions, and soil characteristics to determine wild yam species distribution. The prediction of the current availability of wild yam resources showed that abundant wild yam resources are scarce and face high harvest intensity. Experiments on yams cultivation revealed that germination of seeds was enhanced by using pre-germination treatments before planting, vegetative regeneration performed better with the upper part of the tubers (corms) rather than the sets of tubers. In-situ regeneration was possible for the upper parts of the wild tubers but the success depended significantly on the type of soil. The use of manure (10-20 t ha¹) increased the yield of the D. alata and D. alatipes by 40%. We thus suggest the promotion of other cultivated varieties of D. alata found regions neighbouring as the Mahafaly Plateau.
Resumo:
The study aims to analyse factors affecting contributions of goat farming to household economic success and food security in three goat production systems of Ethiopia. A study was conducted in three districts of Ethiopia representing arid agro-pastoral (AAP), semi-arid agro-pastoral (SAAP) and highland mixed crop-livestock (HMCL) systems involving 180 goat keeping households. Gross margin (GM) and net benefit (NB1 and NB2) were used as indicators of economic success of goat keeping. NB1 includes in-kind benefits of goats (consumption and manure), while NB2 additionally constitutes intangible benefits (insurance and finance). Household dietary diversity score (HDDS) was used as a proxy indicator of food security. GM was significantly affected by an off-take rate and flock size interaction (P<0.001). The increment of GM due to increased off-take rate was more prominent for farmers with bigger flocks. Interaction between flock size and production system significantly (P<0.001) affected both NB1 and NB2. The increment of NB1 and NB2 by keeping larger flocks was higher in AAP system, due to higher in-kind and intangible benefits of goats in this system. Effect of goat flock size as a predictor of household dietary diversity was not significant (P>0.05). Nevertheless, a significant positive correlation (P<0.05) was observed between GM from goats and HDDS in AAP system, indicating the indirect role of goat production for food security. The study indicated that extent of utilising tangible and intangible benefits of goats varied among production systems and these differences should be given adequate attention in designing genetic improvement programs.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.
Resumo:
In Catalonia, according to the nitrate directive (91/676/EU), nine areas have been declared as vulnerable to nitrate pollution from agricultural sources (Decret 283/1998 and Decret 479/2004). Five of these areas have been studied coupling hydro chemical data with a multi-isotopic approach (Vitòria et al. 2005, Otero et al. 2007, Puig et al. 2007), in an ongoing research project looking for an integrated application of classical hydrochemistry data, with a comprehensive isotopic characterisation (δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δD and δ18O of water). Within this general frame, the contribution presented explores compositional ways of: (i) distinguish agrochemicals and manure N pollution, (ii) quantify natural attenuation of nitrate (denitrification), and identify possible controlling factors. To achieve this two-fold goal, the following techniques have been used. Separate biplots of each suite of data show that each studied region has a distinct δ34S and pH signatures, but they are homogeneous with regard to NO3- related variables. Also, the geochemical variables were projected onto the compositional directions associated with the possible denitrification reactions in each region. The resulting balances can be plot together with some isotopes, to assess their likelihood of occurrence
Resumo:
There have been only a few studies of potassium (K) losses from grassland systems, and little is known about their dynamics, especially in relation to nitrogen (N) management. A study was performed during the autumn and winter of 1999 and 2000 to understand the effects of N and drainage on the dynamics of K leaching on a hillslope grassland soil in southwestern England. Two N application rates were studied (0 and 280 kg N ha(-1) yr(-1)), both with and without the drainage. Treatments receiving N also received farmyard manure (FM). Higher total K losses and K concentrations in the leachates were found in the N + FM treatments (150 and 185% higher than in 0 N treatments), which were related to K additions in the FM. Drainage reduced K losses by 35% because of an increase in dry matter production and a reduction in overland and preferential flow. The pattern of change in K concentration in the leachates was associated with preferential flow at the beginning of the drainage season and with matrix flow later in winter, and was best described by a double exponential curve. Rainfall intensity and the autumn application of FM were the main determinants of K losses by leaching. The study provided new insights into the relationships between soil hydrology, rainfall, and K leaching and its implications for grassland systems.
Resumo:
The main inputs, outputs and transfers of potassium (K) in soils and swards under typical south west England conditions were determined during 1999/00 and 2000/01 to establish soil and field gate K budgets under different fertilizer nitrogen (N) (0 and 280 kg ha(-1) yr(-1)) and drainage (undrained and drained) treatments. Plots receiving fertilizer N also received farmyard manure (FYM). Potassium soil budgets ranged, on average for the two years, from -5 (+N, drained) to +9 (no N and undrained) kg K ha(-1) yr(-1) and field gate budgets from +23 (+N, drained) to +89 (+N, undrained). The main inputs and outputs to the soil K budgets were fertilizer application (65%) and plant uptake (93%). Animals had a minor effect on K export but a major impact on K recycling. Nitrogen fertilizer application and drainage increased K uptake by the grass and, with it, the efficiency of K used. It also depleted easily available soil K, which could be associated with smaller K losses by leaching.