933 resultados para Phase-behavior


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of research on the influence of trace compounds from rock salt deicers on portland cement mortar and concrete. An evaluation of the deicers in stock throughout the state showed that about ninety-five percent contained enough sulfate to cause accelerated deterioration of concrete. Of the impurities found in rock salts, sulfate compounds of calcium and magnesium were found to be equally deleterious. Magnesium chloride was found to be innocuous. Introduction of fly ash eliminated the damage to portland cement mortar caused by sulfates. When used with frost resistant Alden aggregate in fly ash concrete and exposed to a variety of deicer brine compositions, the concrete did not deteriorate after exposure. With the exception of a high calcium brine, the behavior of the frost-prone Garrison aggregate was independent of deicer treatment; the high calcium brine reduced frost damage with this aggregate. Two approaches to reducing sulfate deterioration from deicers are suggested as (1) limiting the amount of sulfate to about 0.28 percent, and (2) making concrete sulfate-resistant by using fly ash. Techniques for making existing concrete deicer-sulfate-resistant are essential to a practical solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The kinetics and microstructure of solid-phase crystallization under continuous heating conditions and random distribution of nuclei are analyzed. An Arrhenius temperature dependence is assumed for both nucleation and growth rates. Under these circumstances, the system has a scaling law such that the behavior of the scaled system is independent of the heating rate. Hence, the kinetics and microstructure obtained at different heating rates differ only in time and length scaling factors. Concerning the kinetics, it is shown that the extended volume evolves with time according to αex = [exp(κCt′)]m+1, where t′ is the dimensionless time. This scaled solution not only represents a significant simplification of the system description, it also provides new tools for its analysis. For instance, it has been possible to find an analytical dependence of the final average grain size on kinetic parameters. Concerning the microstructure, the existence of a length scaling factor has allowed the grain-size distribution to be numerically calculated as a function of the kinetic parameters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this report is to describe the major research activities during the period of February 1, 1985 - October 30, 1986 for the Iowa Highway Research Board under the research contract entitled "Development of a Conductometric Test for Frost Resistance of Concrete." The objective of this research, as stated in the project proposal, is to develop a test method which can be reasonably rapidly performed in the laboratory and in the field to predict the behavior of concrete subjected to the action of alternate freezing and thawing with a high degree of certainty. In the work plan of the proposal it was stated that the early part of the first year would be devoted to construction of testing equipment and preparation of specimens and the remainder of the year would be devoted to the testing of specimens. It was also stated that the second and third years would be devoted to performance and refinements of tests, data analysis, preparation of suggested specifications, and performance of tests covering variables which need to be studied such as types of aggregates, fly ash replacements and other admixtures. The objective of this report is to describe the progress made during the first 20 months of this project and assess the significance of the results obtained thus far and the expected significance of the results obtainable during the third year of the project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We characterize the different morphological phases that occur in a simple one-dimensional model of propagation of innovations among economic agents [X. Guardiola et al., Phys. Rev E 66, 026121 (2002)]. We show that the model can be regarded as a nonequilibrium surface growth model. This allows us to demonstrate the presence of a continuous roughening transition between a flat (system size independent fluctuations) and a rough phase (system size dependent fluctuations). Finite-size scaling studies at the transition strongly suggest that the dynamic critical transition does not belong to directed percolation and, in fact, critical exponents do not seem to fit in any of the known universality classes of nonequilibrium phase transitions. Finally, we present an explanation for the occurrence of the roughening transition and argue that avalanche driven dynamics is responsible for the novel critical behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a spatiotemporal adaptive multiscale algorithm, which is based on the Multiscale Finite Volume method. The algorithm offers a very efficient framework to deal with multiphysics problems and to couple regions with different spatial resolution. We employ the method to simulate two-phase flow through porous media. At the fine scale, we consider a pore-scale description of the flow based on the Volume Of Fluid method. In order to construct a global problem that describes the coarse-scale behavior, the equations are averaged numerically with respect to auxiliary control volumes, and a Darcy-like coarse-scale model is obtained. The space adaptivity is based on the idea that a fine-scale description is only required in the front region, whereas the resolution can be coarsened elsewhere. Temporal adaptivity relies on the fact that the fine-scale and the coarse-scale problems can be solved with different temporal resolution (longer time steps can be used at the coarse scale). By simulating drainage under unstable flow conditions, we show that the method is able to capture the coarse-scale behavior outside the front region and to reproduce complex fluid patterns in the front region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the sorption and elastic properties of the cation-exchange resins were studied to explain the liquid chromatographic separation of carbohydrates. Na+, Ca2+ and La3+ form strong poly(styrene-co-divinylbenzene) (SCE) as well as Na+ and Ca2+ form weak acrylic (WCE) cation-exchange resins at different cross-link densities were treated within this work. The focus was on the effects of water-alcohol mixtures, mostly aqueous ethanol, and that of the carbohydrates. The carbohydrates examined were rhamnose, xylose, glucose, fructose, arabinose, sucrose, xylitol and sorbitol. In addition to linear chromatographic conditions, non-linear conditions more typical for industrial applications were studied. Both experimental and modeling aspectswere covered. The aqueous alcohol sorption on the cation-exchangers were experimentally determined and theoretically calculated. The sorption model includes elastic parameters, which were obtained from sorption data combined with elasticity measurements. As hydrophilic materials cation-exchangers are water selective and shrink when an organic solvent is added. At a certain deswelling degree the elastic resins go through glass transition and become as glass-like material. Theincreasing cross-link level and the valence of the counterion decrease the sorption of solvent components in the water-rich solutions. The cross-linkage or thecounterions have less effect on the water selectivity than the resin type or the used alcohol. The amount of water sorbed is higher in the WCE resin and, moreover, the WCE resin is more water selective than the corresponding SCE resin. Theincreased aliphatic part of lower alcohols tend to increase the water selectivity, i.e. the resins are more water selective in 2-propanol than in ethanol solutions. Both the sorption behavior of carbohydrates and the sorption differences between carbohydrates are considerably affected by the eluent composition and theresin characteristics. The carbohydrate sorption was experimentally examined and modeled. In all cases, sorption and moreover the separation of carbohydrates are dominated by three phenomena: partition, ligand exchange and size exclusion. The sorption of hydrophilic carbohydrates increases when alcohol is added into the eluent or when carbohydrate is able to form coordination complexes with the counterions, especially with multivalent counterions. Decreasing polarity of the eluent enhances the complex stability. Size exclusion effect is more prominent when the resin becomes tighter or carbohydrate size increases. On the other hand,the elution volumes between different sized carbohydrates decreases with the decreasing polarity of the eluent. The chromatographic separation of carbohydrateswas modeled, using rhamnose and xylose as target molecules. The thermodynamic sorption model was successfully implemented in the rate-based column model. The experimental chromatographic data were fitted by using only one adjustable parameter. In addition to the fitted data also simulated data were generated and utilized in explaining the effect of the eluent composition and of the resin characteristics on the carbohydrate separation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plusieurs études suggèrent que les patients qui présentent un premier épisode psychotique et un passé délictueux présenteraient une clinique spécifique et nécessiteraient une prise en charge adaptée. A partir d'une cohorte de patients suivis pour un premier épisode psychotique dans la région de Melbourne {The Early Psychosis Prevention and Intervention Centre), nous avons analysé la prévalence d'actes délictueux dans leur passé (1), les caractéristiques cliniques à leur admission (2), l'évolution à court terme des patients ayant commis des délits par rapport aux autres patients (3). Nous avons également cherché à déterminer si des délits plus graves (atteinte à l'intégrité d'une personne) étaient corrélés à des caractéristiques cliniques particulières. Sur les 649 patients dont les données ont pu être analysées entre 1998 et 2000, 29% avaient un passé délictueux. Ils étaient en majorité des hommes et présentaient des difficultés sociales et scolaires plus importantes que les autres patients. Ils avaient également recours de manière plus régulière à des substances illicites et commis plus souvent des tentatives de suicide. Le tableau clinique qu'ils présentaient à leur admission dans le programme de soins était plus complexe et l'évolution globalement plus défavorable après 18 mois de traitement. Nous avons relevé aussi que la durée de psychose non traitée était plus longue que celle des autres patients. Enfin, les délits avec atteinte à l'intégrité d'une autre personne étaient plus fréquents en présence d'un insight faible et nécessitaient un plus grand nombre d'hospitalisation. Ces résultats confirment le besoin d'une recherche approfondie dans ce champ de la clinique et de stratégies de prévention et de soins plus spécifiques. Une détection précoce chez les jeunes hommes qui commettent des actes délictueux serait particulièrement importante puisque notre étude suggère que certains d'entre eux seraient dans une phase débutante et non reconnue d'un épisode psychotique. Une intervention plus rapide et adaptée pourrait avoir des conséquences positives à plusieurs niveaux.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The objective of this study was to compare posttreatment seizure severity in a phase III clinical trial of eslicarbazepine acetate (ESL) as adjunctive treatment of refractory partial-onset seizures. METHODS: The Seizure Severity Questionnaire (SSQ) was administered at baseline and posttreatment. The SSQ total score (TS) and component scores (frequency and helpfulness of warning signs before seizures [BS]; severity and bothersomeness of ictal movement and altered consciousness during seizures [DS]; cognitive, emotional, and physical aspects of postictal recovery after seizures [AS]; and overall severity and bothersomeness [SB]) were calculated for the per-protocol population. Analysis of covariance, adjusted for baseline scores, estimated differences in posttreatment least square means between treatment arms. RESULTS: Out of 547 per-protocol patients, 441 had valid SSQ TS both at baseline and posttreatment. Mean posttreatment TS for ESL 1200mg/day was significantly lower than that for placebo (2.68 vs 3.20, p<0.001), exceeding the minimal clinically important difference (MCID: 0.48). Mean DS, AS, and SB were also significantly lower with ESL 1200mg/day; differences in AS and SB exceeded the MCIDs. The TS, DS, AS, and SB were lower for ESL 800mg/day than for placebo; only SB was significant (p=0.013). For both ESL arms combined versus placebo, mean scores differed significantly for TS (p=0.006), DS (p=0.031), and SB (p=0.001). CONCLUSIONS: Therapeutic ESL doses led to clinically meaningful, dose-dependent reductions in seizure severity, as measured by SSQ scores. CLASSIFICATION OF EVIDENCE: This study presents Class I evidence that adjunctive ESL (800 and 1200mg/day) led to clinically meaningful, dose-dependent seizure severity reductions, measured by the SSQ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The properties of water can have a strong dependence on the confinement. Here, we consider a water monolayer nanoconfined between hydrophobic parallel walls under conditions that prevent its crystallization. We investigate, by simulations of a many-body coarse-grained water model, how the properties of the liquid are affected by the confinement. We show, by studying the response functions and the correlation length and by performing finite-size scaling of the appropriate order parameter, that at low temperature the monolayer undergoes a liquid-liquid phase transition ending in a critical point in the universality class of the two-dimensional (2D) Ising model. Surprisingly, by reducing the linear size L of the walls, keeping the walls separation h constant, we find a 2D-3D crossover for the universality class of the liquid-liquid critical point for L/h=~50, i.e. for a monolayer thickness that is small compared to its extension. This result is drastically different from what is reported for simple liquids, where the crossover occurs for , and is consistent with experimental results and atomistic simulations. We shed light on these findings showing that they are a consequence of the strong cooperativity and the low coordination number of the hydrogen bond network that characterizes water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations have been carried out on the bromate - oxalic acid - Ce(IV) - acetone oscillating reaction, under flow conditions, using Field and Boyd's model (J. Phys. Chem. 1985, 89, 3707). Many different complex dynamic behaviors were found, including simple periodic oscillations, complex periodic oscillations, quasiperiodicity and chaos. Some of these complex oscillations can be understood as belonging to a Farey sequence. The many different behaviors were systematized in a phase diagram which shows that some regions of complex patterns were nested with one inside the other. The existence of almost all known dynamic behavior for this system allows the suggestion that it can be used as a model for some very complex phenomena that occur in biological systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features