935 resultados para Peracetic-acid Oxidation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The conducting self-doping copolymer poly(aniline-co-ABA) preserves its redox activity at pH values as high as 7. This observation was the starting point to synthesize an organic–inorganic hybrid composite able to electrochemically oxidize ascorbic acid molecules at that pH. The inorganic part of the catalytic element was an ordered mesoporous electrodeposit of SiO2, which has been used as the template for the electrochemical insertion of the self-doping copolymer. The oxidation of ascorbate ions at a fixed potential on this composite was studied by means of the kinetic model proposed by Bartlett and Wallace (2001). It was observed that the effective kinetic constant KME increased significantly but, simultaneously, k′ME remained almost constant when the composite was employed as the electrocatalytic substrate. These results were interpreted in the light of two combinations of kinetic constants, which strongly suggested that the increase in KME should be ascribed to the improvement in electronic conductivity of the copolymer induced by the highly ordered silica template.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chicken breast from nine products and from the following production regimes: conventional (chilled and frozen), organic and free range, were analysed for fatty acid composition of total lipids, preventative and chain breaking antioxidant contents and lipid oxidation during 5 days of sub-ambient storage following purchase. Total lipids were extracted with an optimal amount of a cold chloroform methanol solvent. Lipid compositions varied, but there were differences between conventional and organic products in their contents of total polyunsaturated fatty acids and n-3 and n-6 fatty acids and n-6:n-3 ratio. Of the antioxidants, a-tocopherol content was inversely correlated with lipid oxidation. The antioxidant enzyme activities of catalase, glutathione peroxidase and glutathione reductase varied between products. Modelling with partial least squares regression showed no overall relationship between total antioxidants and lipid data, but certain individual antioxidants showed a relationship with specific lipid fractions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon-supported Pt x –Rh y –Sn z catalysts (x:y:z = 3:1:4, 6:2:4, 9:3:4) are prepared by Pt, Rh, and Sn precursors reduction in different addition order. The materials are characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques and are evaluated for the electrooxidation of ethanol in acidic media by cyclic voltammetry, chronoamperometry, and anode potentiostatic polarization. The influence of both the order in which the precursors are added and the composition of metals in the catalysts on the electrocatalytic activity and physico-chemical characteristics of Pt x –Rh y –Sn z /C catalysts is evaluated. Oxidized Rh species prevail on the surface of catalysts synthesized by simultaneous co-precipitation, thus demonstrating the influence of synthesis method on the oxidation state of catalysts. Furthermore, high amounts of Sn in composites synthesized by co-precipitation result in very active catalysts at low potentials (bifunctional effect), while medium Sn load is needed for sequentially deposited catalysts when the electronic effect is most important (high potentials), since more exposed Pt and Rh sites are needed on the catalyst surface to alcohol oxidation. The Pt3–Rh1–Sn4/C catalyst prepared by co-precipitation is the most active at potentials lower than 0.55 V (related to bifunctional effect), while the Pt6–Rh2–Sn4/C catalyst, prepared by sequential precipitation (first Rh and, after drying, Pt + Sn), is the most active above 0.55 V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glucaric acid (GA) is one of the building block chemicals derived from sugar biomass with higher added value. Nowadays, GA is produced by oxidation of glucose (Glu) with either stoichiometric oxidants (HNO3), or by means of electrochemical or biochemical synthesis. However, these processes show drawbacks from either the environmental or economic viewpoint. For this reason, gold nanoparticles (Au NPs) supported on activated carbon (AC) have been studied as catalysts for the oxidation of Glu, using O2 as oxidant in the presence of a base. Using sol immobilization technique, Au NPs have been supported on AC following different experimental procedures. UV-Vis spectroscopy, XRD, TEM and TG analysis were utilized in the characterization of the catalysts. The operational conditions were optimized obtaining 24% of yield of GA, 37% to GO and 27% to byproducts in 1 h, 1000 rpm, 10 bar of O2 and Glu:Au:NaOH molar ratio of 1000:1:3000. Under such conditions, catalysts show relatively high Glu conversion (≥82%) with different GA yields. GO+GA yield is around 58-61%. Therefore, the oxidation reaction was performed at 15 min where Au/AC PVA0 reached the highest yield of GA (16%) and Au/AC PVA2.4 gave the lowest (8%). It is evident that the presence of PVA influences to a higher degree the reaction rate than the Au NPs size. Hence, the effect of different heat treatments where applied for the removal of PVA: washing with water at 60℃ or heat treatment (120-250℃) with Air/H2. Washing treatment and heat treatment at 120℃ with Air/H2 may have resulted in the mildest treatments for the removal of PVA. Finally, two different supports have been used in order to study the effect of metal-support interaction in the immobilization of Au NPs: ZrO2 and AC. Au/AC catalyst demonstrated a higher conversion of GO to GA at short reaction times (15.1% yield GA) compared to Au/ZrO2 (2.4% yield GA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypobromous acid (HOBr) is an inorganic acid produced by the oxidation of the bromide anion (Br(-)). The blood plasma level of Br(-) is more than 1,000-fold lower than that of chloride anion (Cl(-)). Consequently, the endogenous production of HOBr is also lower compared to hypochlorous acid (HOCl). Nevertheless, there is much evidence of the deleterious effects of HOBr. From these data, we hypothesized that the reactivity of HOBr could be better associated with its electrophilic strength. Our hypothesis was confirmed, since HOBr was significantly more reactive than HOCl when the oxidability of the studied compounds was not relevant. For instance: anisole (HOBr, k2=2.3×10(2)M(-1)s(-1), HOCl non-reactive); dansylglycine (HOBr, k2=7.3×10(6)M(-1)s(-1), HOCl, 5.2×10(2)M(-1)s(-1)); salicylic acid (HOBr, k2=4.0×10(4)M(-1)s(-1), non-reactive); 3-hydroxybenzoic acid (HOBr, k2=5.9×10(4)M(-1)s(-1), HOCl, k2=1.1×10(1)M(-1)s(-1)); uridine (HOBr, k2=1.3×10(3)M(-1)s(-1), HOCl non-reactive). The compounds 4-bromoanisole and 5-bromouridine were identified as the products of the reactions between HOBr and anisole or uridine, respectively, i.e. typical products of electrophilic substitutions. Together, these results show that, rather than an oxidant, HOBr is a powerful electrophilic reactant. This chemical property was theoretically confirmed by measuring the positive Mulliken and ChelpG charges upon bromine and chlorine. In conclusion, the high electrophilicity of HOBr could be behind its well-established deleterious effects. We propose that HOBr is the most powerful endogenous electrophile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present in this work an experimental investigation of the effect of temperature (from 25 to 180 ºC) in the electro-oxidation of ethanol on platinum in two different phosphoric acid concentrations. We observed that the onset potential for ethanol electro-oxidation shifts to lower values and the reaction rates increase as temperature is increased for both electrolytes. The results were rationalized in terms of the effect of temperature on the adsorption of reaction intermediates, poisons, and anions. The formation of oxygenated species at high potentials, mainly in the more diluted electrolyte, also contributes to increase the electro-oxidation reaction rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the title 2:1 adduct, C(14)H(10)O(4)S(2)center dot 0.5C(10)H(8)N(2)O(2), which arose from an unexpected oxidation of a precursor, the dihedral angle between the aromatic rings in the disulfide is 82.51 (11)degrees. In the crystal, the molecules are linked by O-H center dot center dot center dot O, OH center dot center dot center dot N and C-H center dot center dot center dot O interactions, generating sheets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical polymerization of aniline in a hydrophobic room-temperature ionic liquid and the spectroelectrochemical characterization of the formed film are presented. The polymerization occurs without the presence of acid in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMITFSI), leading to a very stable electroactive material where no degradation was observed even at high applied potentials. Both in situ UV-Vis and Raman spectroscopic studies provided evidence for the stabilization of pernigraniline salt at high oxidation potentials and that this polyaniline state is the conducting form, as was corroborated by in situ resistance measurements. These data are indicative that low conductivity is not an intrinsic property of pernigraniline salt and this point must be reconsidered.