998 resultados para Particle beams
Resumo:
It has not yet been established whether the spatial variation of particle number concentration (PNC) within a microscale environment can have an effect on exposure estimation results. In general, the degree of spatial variation within microscale environments remains unclear, since previous studies have only focused on spatial variation within macroscale environments. The aims of this study were to determine the spatial variation of PNC within microscale school environments, in order to assess the importance of the number of monitoring sites on exposure estimation. Furthermore, this paper aims to identify which parameters have the largest influence on spatial variation, as well as the relationship between those parameters and spatial variation. Air quality measurements were conducted for two consecutive weeks at each of the 25 schools across Brisbane, Australia. PNC was measured at three sites within the grounds of each school, along with the measurement of meteorological and several other air quality parameters. Traffic density was recorded for the busiest road adjacent to the school. Spatial variation at each school was quantified using coefficient of variation (CV). The portion of CV associated with instrument uncertainty was found to be 0.3 and therefore, CV was corrected so that only non-instrument uncertainty was analysed in the data. The median corrected CV (CVc) ranged from 0 to 0.35 across the schools, with 12 schools found to exhibit spatial variation. The study determined the number of required monitoring sites at schools with spatial variability and tested the deviation in exposure estimation arising from using only a single site. Nine schools required two measurement sites and three schools required three sites. Overall, the deviation in exposure estimation from using only one monitoring site was as much as one order of magnitude. The study also tested the association of spatial variation with wind speed/direction and traffic density, using partial correlation coefficients to identify sources of variation and non-parametric function estimation to quantify the level of variability. Traffic density and road to school wind direction were found to have a positive effect on CVc, and therefore, also on spatial variation. Wind speed was found to have a decreasing effect on spatial variation when it exceeded a threshold of 1.5 (m/s), while it had no effect below this threshold. Traffic density had a positive effect on spatial variation and its effect increased until it reached a density of 70 vehicles per five minutes, at which point its effect plateaued and did not increase further as a result of increasing traffic density.
Resumo:
Atmospheric ultrafine particles play an important role in affecting human health, altering climate and degrading visibility. Numerous studies have been conducted to better understand the formation process of these particles, including field measurements, laboratory chamber studies and mathematical modeling approaches. Field studies on new particle formation found that formation processes were significantly affected by atmospheric conditions, such as the availability of particle precursors and meteorological conditions. However, those studies were mainly carried out in rural areas of the northern hemisphere and information on new particle formation in urban areas, especially those in subtropical regions, is limited. In general, subtropical regions display a higher level of solar radiation, along with stronger photochemical reactivity, than those regions investigated in previous studies. However, based on the results of these studies, the mechanisms involved in the new particle formation process remain unclear, particularly in the Southern Hemisphere. Therefore, in order to fill this gap in knowledge, a new particle formation study was conducted in a subtropical urban area in the Southern Hemisphere during 2009, which measured particle size distribution in different locations in Brisbane, Australia. Characterisation of nucleation events was conducted at the campus building of the Queensland University of Technology (QUT), located in an urban area of Brisbane. Overall, the annual average number concentrations of ultrafine, Aitken and nucleation mode particles were found to be 9.3 x 103, 3.7 x 103 and 5.6 x 103 cm-3, respectively. This was comparable to levels measured in urban areas of northern Europe, but lower than those from polluted urban areas such as the Yangtze River Delta, China and Huelva and Santa Cruz de Tenerife, Spain. Average particle number concentration (PNC) in the Brisbane region did not show significant seasonal variation, however a relatively large variation was observed during the warmer season. Diurnal variation of Aitken and nucleation mode particles displayed different patterns, which suggested that direct vehicle exhaust emissions were a major contributor of Aitken mode particles, while nucleation mode particles originated from vehicle exhaust emissions in the morning and photochemical production at around noon. A total of 65 nucleation events were observed during 2009, in which 40 events were classified as nucleation growth events and the remainder were nucleation burst events. An interesting observation in this study was that all nucleation growth events were associated with vehicle exhaust emission plumes, while the nucleation burst events were associated with industrial emission plumes from an industrial area. The average particle growth rate for nucleation events was found to be 4.6 nm hr-1 (ranging from 1.79-7.78 nm hr-1), which is comparable to other urban studies conducted in the United States, while monthly particle growth rates were found to be positively related to monthly solar radiation (r = 0.76, p <0.05). The particle growth rate values reported in this work are the first of their kind to be reported for the subtropical urban area of Australia. Furthermore, the influence of nucleation events on PNC within the urban airshed was also investigated. PNC was simultaneously measured at urban (QUT), roadside (Woolloongabba) and semi-urban (Rocklea) sites in Brisbane during 2009. Total PNC at these sites was found to be significantly affected by regional nucleation events. The relative fractions of PNC to total daily PNC observed at QUT, Woolloongabba and Rocklea were found to be 12%, 9% and 14%, respectively, during regional nucleation events. These values were higher than those observed as a result of vehicle exhaust emissions during weekday mornings, which ranged from 5.1-5.5% at QUT and Woolloongabba. In addition, PNC in the semi-urban area of Rocklea increased by a factor of 15.4 when it was upwind from urban pollution sources under the influence of nucleation burst events. Finally, we investigated the influence of sulfuric acid on new particle formation in the study region. A H2SO4 proxy was calculated by using [SO2], solar radiation and particle condensation sink data to represent the new particle production strength for the urban, roadside and semi-urban areas of Brisbane during the period June-July of 2009. The temporal variations of the H2SO4 proxies and the nucleation mode particle concentration were found to be in phase during nucleation events in the urban and roadside areas. In contrast, the peak of proxy concentration occurred 1-2 hr prior to the observed peak in nucleation mode particle concentration at the downwind semi-urban area of Brisbane. A moderate to strong linear relationship was found between the proxy and the freshly formed particles, with r2 values of 0.26-0.77 during the nucleation events. In addition, the log[H2SO4 proxy] required to produce new particles was found to be ~1.0 ppb Wm-2 s and below 0.5 ppb Wm-2 s for the urban and semi-urban areas, respectively. The particle growth rates were similar during nucleation events at the three study locations, with an average value of 2.7 ± 0.5 nm hr-1. This result suggested that a similar nucleation mechanism dominated in the study region, which was strongly related to sulphuric acid concentration, however the relationship between the proxy and PNC was poor in the semi-urban area of Rocklea. This can be explained by the fact that the nucleation process was initiated upwind of the site and the resultant particles were transported via the wind to Rocklea. This explanation is also supported by the higher geometric mean diameter value observed for particles during the nucleation event and the time lag relationship between the H2SO4 proxy and PNC observed at Rocklea. In summary, particle size distribution was continuously measured in a subtropical urban area of southern hemisphere during 2009, the findings from which formed the first particle size distribution dataset in the study region. The characteristics of nucleation events in the Brisbane region were quantified and the properties of the nucleation growth and burst events are discussed in detail using a case studies approach. To further investigate the influence of nucleation events on PNC in the study region, PNC was simultaneously measured at three locations to examine the spatial variation of PNC during the regional nucleation events. In addition, the impact of upwind urban pollution on the downwind semi-urban area was quantified during these nucleation events. Sulphuric acid was found to be an important factor influencing new particle formation in the urban and roadside areas of the study region, however, a direct relationship with nucleation events at the semi-urban site was not observed. This study provided an overview of new particle formation in the Brisbane region, and its influence on PNC in the surrounding area. The findings of this work are the first of their kind for an urban area in the southern hemisphere.
Resumo:
A novel Glass Fibre Reinforced Polymer (GFRP) sandwich panel was developed by an Australian manufacturer for civil engineering applications. This research is motivated by the new applications of GFRP sandwich structures in civil engineering such as slab, beam, girder and sleeper. An optimisation methodology is developed in this work to enhance the design of GFRP sandwich beams. The design of single and glue laminated GFRP sandwich beam were conducted by using numerical optimisation. The numerical multi-objective optimisation considered a design two objectives simultaneously. These objectives are cost and mass. The numerical optimisation uses the Adaptive Range Multi-objective Genetic Algorithm (ARMOGA) and Finite Element (FE) method. Trade-offs between objectives was found during the optimisation process. Multi-objective optimisation shows a core to skin mass ratio equal to 3.68 for the single sandwich beam cross section optimisation and it showed that the optimum core to skin thickness ratio is 11.0.
Resumo:
This paper presents the details of experimental studies on the shear behaviour and strength of lipped channel beams (LCBs). The LCB sections are commonly used as flexural members in residential, industrial and commercial buildings. To ensure safe and efficient designs of LCBs, many research studies have been undertaken on the flexural behaviour of LCBs. To date, however, limited research has been conducted into the strength of LCB sections subject to shear actions. Therefore a detailed experimental study involving 20 tests was undertaken to investigate the shear behaviour and strength of LCBs. This research has shown the presence of increased shear capacity of LCBs due to the additional fixity along the web to flange juncture, but the current design rules (AS/NZS 4600 and AISI) ignore this effect and were thus found to be conservative. Therefore they were modified by including a higher elastic shear buckling coefficient. Ultimate shear capacity results obtained from the shear tests were compared with the modified shear capacity design rules. It was found that they are still conservative as they ignore the presence of post-buckling strength. Hence the AS/NZS 4600 and AISI design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method (DSM) format. This paper presents the details of this study and the results including the modified shear design rules.
Resumo:
Cold-formed steel members are increasingly used as primary structural elements in the building industries around the world due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. However, their shear capacities are determined based on conservative design rules. Current practice in flooring systems is to include openings in the web element of floor joists or bearers so that building services can be located within them. Shear behaviour of LCBs with web openings is more complicated while their shear strengths are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed experimental study involving 40 shear tests was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Simply supported test specimens of LCBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure. This paper presents the details of this experimental study and the results of their shear capacities and behavioural characteristics. Experimental results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs with web openings. Improved design equations have been proposed for the shear strength of LCBs with web openings based on the experimental results from this study.
Resumo:
Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. The shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. However, limited research has been undertaken on the shear behaviour and strength of LCBs with web openings. Hence a detailed numerical study was undertaken to investigate the shear behaviour and strength of LCBs with web openings. Finite element models of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were developed and validated by comparing their results with test results. They were then used in a detailed parametric study to investigate the effects of various influential parameters. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This paper presents the details of finite element modelling of LCBs with web openings, validation of finite element models, and the development of improved shear design rules. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.
Resumo:
Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35×103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child’s activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles.
Resumo:
Nonthermal plasma (NTP) treatment of exhaust gas is a promising technology for both nitrogen oxides (NOX) and particulate matter (PM) reduction by introducing plasma into the exhaust gases. This paper considers the effect of NTP on PM mass reduction, PM size distribution, and PM removal efficiency. The experiments are performed on real exhaust gases from a diesel engine. The NTP is generated by applying high-voltage pulses using a pulsed power supply across a dielectric barrier discharge (DBD) reactor. The effects of the applied high-voltage pulses up to 19.44 kVpp with repetition rate of 10 kHz are investigated. In this paper, it is shown that the PM removal and PM size distribution need to be considered both together, as it is possible to achieve high PM removal efficiency with undesirable increase in the number of small particles. Regarding these two important factors, in this paper, 17 kVpp voltage level is determined to be an optimum point for the given configuration. Moreover, particles deposition on the surface of the DBD reactor is found to be a significant phenomenon, which should be considered in all plasma PM removal tests.
Resumo:
Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.
Resumo:
This study aimed to quantify the efficiency of deep bag and electrostatic filters, and assess the influence of ventilation systems using these filters on indoor fine (<2.5 µm) and ultrafine particle concentrations in commercial office buildings. Measurements and modelling were conducted for different indoor and outdoor particle source scenarios at three office buildings in Brisbane, Australia. Overall, the in-situ efficiency, measured for particles in size ranges 6 to 3000 nm, of the deep bag filters ranged from 26.3 to 46.9% for the three buildings, while the in-situ efficiency of the electrostatic filter in one building was 60.2%. The highest PN and PM2.5 concentrations in one of the office buildings (up to 131% and 31% higher than the other two buildings, respectively) were due to the proximity of the building’s HVAC air intakes to a nearby bus-only roadway, as well as its higher outdoor ventilation rate. The lowest PN and PM2.5 concentrations (up to 57% and 24% lower than the other two buildings, respectively) were measured in a building that utilised both outdoor and mixing air filters in its HVAC system. Indoor PN concentrations were strongly influenced by outdoor levels and were significantly higher during rush-hours (up to 41%) and nucleation events (up to 57%), compared to working-hours, for all three buildings. This is the first time that the influence of new particle formation on indoor particle concentrations has been identified and quantified. A dynamic model for indoor PN concentration, which performed adequately in this study also revealed that using mixing/outdoor air filters can significantly reduce indoor particle concentration in buildings where indoor air was strongly influenced by outdoor particle levels. This work provides a scientific basis for the selection and location of appropriate filters and outdoor air intakes, during the design of new, or upgrade of existing, building HVAC systems. The results also serve to provide a better understanding of indoor particle dynamics and behaviours under different ventilation and particle source scenarios, and highlight effective methods to reduce exposure to particles in commercial office buildings.
Resumo:
Damage detection using modal properties is a widely accepted method. However, quantifying such damage using modal properties is still not well established. With this in mind, a research project is presently underway towards the development of a procedure to detect, locate and quantify damage in structural components using the variations in modal properties. A novel vibration based parameter called Vibration based Damage Index is introduced into the damage assessment procedure. This paper presents the early part of the research project which treats flexural members. The proposed procedure is validated using experimental data and/or theoretical techniques and illustrated through application. Outcomes of this research highlight the ability of the proposed procedure to successfully detect, locate and quantify damage in flexural structural components using the modal properties of the first few modes.
Resumo:
The issue of particle emissions from diesel engines is still a matter of concern due its deleterious effects both on human health and environment(Ristovski et al., 2012). Recently, International Agency for Research on Cancer (IARC) inclusion of diesel engine exhaust particles as carcinogenic to human health added a new margin on it. Apart from the use of after treatment technology, biodiesel is also considered as potential way to reduce particle emission alongside with other emissions(Xue, Grift, & Hansen, 2011). Global biodiesel production is still reasonably small compared to its counterpart fossil diesel, but even this small amount comes from a wide variety of feed stocks. Contrary to fossil diesel, the important physicochemical properties of biodiesel vary among different feed stocks(Hoekman, Broch, Robbins, Ceniceros, & Natarajan, 2012).
Resumo:
Airborne particles have been shown to be associated with a wide range of adverse health effects, which has led to a recent increase in medical research to gain better insight into their health effects. However, accurate evaluation of the exposure-dose-response relationship is highly dependent on the ability to track actual exposure levels of people to airborne particles. This is quite a complex task, particularly in relation to submicrometer and ultrafine particles, which can vary quite significantly in terms of particle surface area and number concentrations. Therefore, suitable monitors that can be worn for measuring personal exposure to these particles are needed. This paper presents an evaluation of the metrological performance of six diffusion charger sensors, NanoTracer (Philips Aerasense) monitors, when measuring particle number and surface area concentrations, as well as particle number distribution mean when compared to reference instruments. Tests in the laboratory (by generating monodisperse and polydisperse aerosols) and in the field (using natural ambient particles) were designed to evaluate the response of these devices under both steady-state and dynamics conditions. Results showed that the NanoTracers performed well when measuring steady state aerosols, however they strongly underestimated actual concentrations during dynamic response testing. The field experiments also showed that, when the majority of the particles were smaller than 20 nm, which occurs during particle formation events in the atmosphere, the NanoTracer underestimated number concentration quite significantly. Even though the NanoTracer can be used for personal monitoring of exposure to ultrafine particles, it also has limitations which need to be considered in order to provide meaningful results.
Resumo:
A technique for analysing exhaust emission plumes from unmodified locomotives under real world conditions is described and applied to the task of characterizing plumes from railway trains servicing an Australian shipping port. The method utilizes the simultaneous measurement, downwind of the railway line, of the following pollutants; particle number, PM2.5 mass fraction, SO2, NOx and CO2, with the last of these being used as an indicator of fuel combustion. Emission factors are then derived, in terms of number of particles and mass of pollutant emitted per unit mass of fuel consumed. Particle number size distributions are also presented. The practical advantages of the method are discussed including the capacity to routinely collect emission factor data for passing trains and to thereby build up a comprehensive real world database for a wide range of pollutants. Samples from 56 train movements were collected, analyzed and presented. The quantitative results for emission factors are: EF(N)=(1.7±1)×1016 kg-1, EF(PM2.5)= (1.1±0.5) g·kg-1, EF(NOx)= (28±14) g·kg-1, and EF(SO2 )= (1.4±0.4) g·kg-1. The findings are compared with comparable previously published work. Statistically significant (p<α, α=0.05) correlations within the group of locomotives sampled were found between the emission factors for particle number and both SO2 and NOx.