961 resultados para PHASE-CONTRAST MICROSCOPY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adaptive immune system plays a critical role in protection at the time of secondary infection. It does so through the rapid and robust reactivation of memory T cells which are maintained long-term, in a phenotypically heterogeneous state, following their primary encounter with Ag. Although most HLA-A*0201/influenza matrix protein(58-66)-specific CD8 T cells from healthy donors display characteristics typical of memory T cells, through our extensive phenotypic analysis we have further shown that up to 20% of these cells express neither the IL-7 receptor CD127 nor the costimulatory molecule CD28. In contrast to the majority of CD28(pos) cells, granzyme B and perforin were frequently expressed by the CD28(neg) cells, suggesting that they are effector cells. Indeed, these cells were able to kill target cells, in an Ag-specific manner, directly ex vivo. Thus, our findings demonstrate the remarkable long-term persistence in healthy humans of not only influenza-specific memory cells, but also of effector T cells. We further observed that granzyme B expression in influenza-specific CD8 T cells paralleled levels in the total CD8 T cell population, suggestive of Ag-nonspecific bystander activation. Sequencing of TCR alpha- and beta-chains showed that the TCR repertoire specific for this epitope was dominated by one, or a few, T cell clonotype per healthy donor. Moreover, our sequencing analysis revealed, for the first time in humans, that identical clonotypes can coexist as both memory and effector T cells, thereby supporting the principle of multipotent clonotypic differentiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Puklen complex of the Mid-Proterozoic Gardar Province, South Greenland, consists of various silica-saturated to quartz-bearing syenites, which are intruded by a peralkaline granite. The primary mafic minerals in the syenites are augite +/- olivine + Fe-Ti oxide + amphibole. Ternary feldspar thermometry and phase equilibria among mafic silicates yield T = 950-750degreesC, a(SiO2) = 0.7-1 and an f(O2) of 1-3 log units below the fayalite-magnetite-quartz (FMQ) buffer at 1 kbar. In the granites, the primary mafic minerals are ilmenite and Li-bearing arfvedsonite, which crystallized at temperatures below 750degreesC and at f(O2) values around the FMQ buffer. In both rock types, a secondary post-magmatic assemblage overprints the primary magmatic phases. In syenites, primary Ca-bearing minerals are replaced by Na-rich minerals such as aegirine-augite and albite, resulting in the release of Ca. Accordingly, secondary minerals include ferro-actinolite, (calcite-siderite)(ss), titanite and andradite in equilibrium with the Na-rich minerals. Phase equilibria indicate that formation of these minerals took place over a long temperature interval from near-magmatic temperatures down to similar to300degreesC. In the course of this cooling, oxygen fugacity rose in most samples. For example, late-stage aegirine in granites formed at the expense of arfvedsonite at temperatures below 300degreesC and at an oxygen fugacity above the haematite-magnetite (HM) buffer. The calculated delta(18)O(melt) value for the syenites (+5.9 to +6.3parts per thousand) implies a mantle origin, whereas the inferred delta(18)O(melt) value of <+5.1parts per thousand for the granitic melts is significantly lower. Thus, the granites require an additional low-delta(18)O contaminant, which was not involved in the genesis of the syenites. Rb/Sr data for minerals of both rock types indicate open-system behaviour for Rb and Sr during post-magmatic metasomatism. Neodymium isotope compositions (epsilonNd(1170 Ma) = -3.8 to -6.4) of primary minerals in syenites are highly variable, and suggest that assimilation of crustal rocks occurred to variable extents. Homogeneous epsilon(Nd) values of -5.9 and -6.0 for magmatic amphibole in the granites lie within the range of the syenites. Because of the very similar neodymium isotopic compositions of magmatic and late- to post-magmatic minerals from the same syenite samples a principally closed-system behaviour during cooling is implied. In contrast, for the granites an externally derived fluid phase is required to explain the extremely low epsilon(Nd) values of about -10 and low delta(18)O between +2.0 and +0.5parts per thousand for late-stage aegirine, indicating an open system in the late-stage history. In this study we show that the combination of phase equilibria constraints with stable and radiogenic isotope data on mineral separates can provide much better constraints on magma evolution during emplacement and crystallization than conventional whole-rock studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this review, we summarize how the new concept of digital optics applied to the field of holographic microscopy has allowed the development of a reliable and flexible digital holographic quantitative phase microscopy (DH-QPM) technique at the nanoscale particularly suitable for cell imaging. Particular emphasis is placed on the original biological information provided by the quantitative phase signal. We present the most relevant DH-QPM applications in the field of cell biology, including automated cell counts, recognition, classification, three-dimensional tracking, discrimination between physiological and pathophysiological states, and the study of cell membrane fluctuations at the nanoscale. In the last part, original results show how DH-QPM can address two important issues in the field of neurobiology, namely, multiple-site optical recording of neuronal activity and noninvasive visualization of dendritic spine dynamics resulting from a full digital holographic microscopy tomographic approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correlative fluorescence and electron microscopy has become an indispensible tool for research in cell biology. The integrated Laser and Electron Microscope (iLEM) combines a Fluorescence Microscope (FM) and a Transmission Electron Microscope (TEM) within one set-up. This unique imaging tool allows for rapid identification of a region of interest with the FM, and subsequent high resolution TEM imaging of this area. Sample preparation is one of the major challenges in correlative microscopy of a single specimen; it needs to be apt for both FM and TEM imaging. For iLEM, the performance of the fluorescent probe should not be impaired by the vacuum of the TEM. In this technical note, we have compared the fluorescence intensity of six fluorescent probes in a dry, oxygen free environment relative to their performance in water. We demonstrate that the intensity of some fluorophores is strongly influenced by its surroundings, which should be taken into account in the design of the experiment. Furthermore, a freeze-substitution and Lowicryl resin embedding protocol is described that yields excellent membrane contrast in the TEM but prevents quenching of the fluorescent immuno-labeling. The embedding protocol results in a single specimen preparation procedure that performs well in both FM and TEM. Such procedures are not only essential for the iLEM, but also of great value to other correlative microscopy approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this project is to evaluate image analysis for characterizing air voids in Portland cement contract (PCC) and asphalt concrete (AC) and aggregate gradation in asphalt concrete. Phase 1 of this project has concentrated on evaluation and refinement of sample preparation techniques, evaluation of methods and instruments for conducting image analysis, and finally, analysis and comparison of a select portion of samples. Preliminary results suggest a strong correlation between the results obtained from the linear traverse method and image analysis methods for determining percent air voids in concrete. Preliminary work with asphalt samples has shown that damage caused by a high vacuum of the conventional scanning electron microscope (SEM) may too disruptive. Alternative solutions have been explored, including confocal microscopy and low vacuum electron microscopy. Additionally, a conventional high vacuum SEM operating at a marginal operating vacuum may suffice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cases of fatal outcome after surgical intervention are autopsied to determine the cause of death and to investigate whether medical error caused or contributed to the death. For medico-legal purposes, it is imperative that autopsy findings are documented clearly. Modern imaging techniques such as multi-detector computed tomography (MDCT) and postmortem CT angiography, which is used for vascular system imaging, are useful tools for determining cause of death. The aim of this study was to determine the utility of postmortem CT angiography for the medico-legal death investigation. This study investigated 10 medico-legal cases with a fatal outcome after surgical intervention using multi-phase postmortem whole body CT angiography. A native CT scan was performed as well as three angiographic phases (arterial, venous, and dynamic) using a Virtangio((R)) perfusion device and the oily contrast agent, Angiofil((R)). The results of conventional autopsy were compared to those from the radiological investigations. We also investigated whether the radiological findings affected the final interpretation of cause-of-death. Causes of death were hemorrhagic shock, intracerebral hemorrhage, septic shock, and a combination of hemorrhage and blood aspiration. The diagnoses were made by conventional autopsy as well as by postmortem CT angiography. Hemorrhage played an important role in eight of ten cases. The radiological exam revealed the exact source of bleeding in seven of the eight cases, whereas conventional autopsy localized the source of bleeding only generally in five of the seven cases. In one case, neither conventional autopsy nor CT angiography identified the source of hemorrhage. We conclude that postmortem CT angiography is extremely useful for investigating deaths following surgical interventions. This technique helps document autopsy findings and allows a second examination if it is needed; specifically, it detects and visualizes the sources of hemorrhages in detail, which is often of particular interest in such cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of information which can be gained from accessory [i.e. age (t)] and rock-forming minerals [i.e. temperature (T) and pressure (P)] requires a more profound understanding of the equilibration kinetics during metamorphic processes. This paper presents an approach comparing conventional P-T estimate from equilibrated assemblages of rock-forming minerals with temperature data derived from yttrium-garnet-monazite (YGM) and yttrium-garnet-xenotime (YGX) geothermometry. Such a comparison provides an initial indication on differences between equilibration of major and trace elements. Regarding this purpose, two migmatites, two polycyclic and one monocyclic gneiss from the Central Alps (Switzerland, northern Italy) were investigated. While the polycyclic samples exhibit trace-element equilibration between monazite and garnet grains assigned to the same metamorphic event, there are relics of monazite and garnet obviously surviving independent of their textural position. These observations suggest that surface processes dominate transport processes during equilibration of those samples. The monocyclic gneiss, on the contrary, displays rare isolated monazite with equilibration of all elements, despite comparably large transport distances. With a nearly linear crystal-size distribution of the garnet grain population, growth kinetics, related to the major elements, were likely surface-controlled in this sample. In contrast to these completely equilibrated examples, the migmatites indicate disequilibrium between garnet and monazite with a change in REE patterns on garnet transects. The cause for this disequilibrium may be related to a potential disequilibrium initiated by a changing bulk chemistry during melt segregation. While migmatite environments are expected to support high transport rates (i.e. high temperatures and melt presence), the evolution of equilibration in migmatites is additionaly related to change in chemistry. As a key finding, surface-controlled equilibration kinetics seem to dominate transport-controlled processes in the investigated samples. This may be decisive information towards the understanding of age data derived from monazite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yeast vacuoles fragment and fuse in response to environmental conditions, such as changes in osmotic conditions or nutrient availability. Here we analyze osmotically induced vacuole fragmentation by time-lapse microscopy. Small fragmentation products originate directly from the large central vacuole. This happens by asymmetrical scission rather than by consecutive equal divisions. Fragmentation occurs in two distinct phases. Initially, vacuoles shrink and generate deep invaginations that leave behind tubular structures in their vicinity. Already this invagination requires the dynamin-like GTPase Vps1p and the vacuolar proton gradient. Invaginations are stabilized by phosphatidylinositol 3-phosphate (PI(3)P) produced by the phosphoinositide 3-kinase complex II. Subsequently, vesicles pinch off from the tips of the tubular structures in a polarized manner, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol-3,5-bisphosphate and the Fab1 complex. It is accelerated by the PI(3)P- and phosphatidylinositol 3,5-bisphosphate-binding protein Atg18p. Thus vacuoles fragment in two steps with distinct protein and lipid requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé L'eau est souvent considérée comme une substance ordinaire puisque elle est très commune dans la nature. En fait elle est la plus remarquable de toutes les substances. Sans l'eau la vie sur la terre n'existerait pas. L'eau représente le composant majeur de la cellule vivante, formant typiquement 70 à 95% de la masse cellulaire et elle fournit un environnement à d'innombrables organismes puisque elle couvre 75% de la surface de terre. L'eau est une molécule simple faite de deux atomes d'hydrogène et un atome d'oxygène. Sa petite taille semble en contradiction avec la subtilité de ses propriétés physiques et chimiques. Parmi celles-là, le fait que, au point triple, l'eau liquide est plus dense que la glace est particulièrement remarquable. Malgré son importance particulière dans les sciences de la vie, l'eau est systématiquement éliminée des spécimens biologiques examinés par la microscopie électronique. La raison en est que le haut vide du microscope électronique exige que le spécimen biologique soit solide. Pendant 50 ans la science de la microscopie électronique a adressé ce problème résultant en ce moment en des nombreuses techniques de préparation dont l'usage est courrant. Typiquement ces techniques consistent à fixer l'échantillon (chimiquement ou par congélation), remplacer son contenu d'eau par un plastique doux qui est transformé à un bloc rigide par polymérisation. Le bloc du spécimen est coupé en sections minces (d’environ 50 nm) avec un ultramicrotome à température ambiante. En général, ces techniques introduisent plusieurs artefacts, principalement dû à l'enlèvement d'eau. Afin d'éviter ces artefacts, le spécimen peut être congelé, coupé et observé à basse température. Cependant, l'eau liquide cristallise lors de la congélation, résultant en une importante détérioration. Idéalement, l'eau liquide est solidifiée dans un état vitreux. La vitrification consiste à refroidir l'eau si rapidement que les cristaux de glace n'ont pas de temps de se former. Une percée a eu lieu quand la vitrification d'eau pure a été découverte expérimentalement. Cette découverte a ouvert la voie à la cryo-microscopie des suspensions biologiques en film mince vitrifié. Nous avons travaillé pour étendre la technique aux spécimens épais. Pour ce faire les échantillons biologiques doivent être vitrifiés, cryo-coupées en sections vitreuse et observées dans une cryo-microscope électronique. Cette technique, appelée la cryo- microscopie électronique des sections vitrifiées (CEMOVIS), est maintenant considérée comme étant la meilleure façon de conserver l'ultrastructure de tissus et cellules biologiques dans un état très proche de l'état natif. Récemment, cette technique est devenue une méthode pratique fournissant des résultats excellents. Elle a cependant, des limitations importantes, la plus importante d'entre elles est certainement dû aux artefacts de la coupe. Ces artefacts sont la conséquence de la nature du matériel vitreux et le fait que les sections vitreuses ne peuvent pas flotter sur un liquide comme c'est le cas pour les sections en plastique coupées à température ambiante. Le but de ce travail a été d'améliorer notre compréhension du processus de la coupe et des artefacts de la coupe. Nous avons ainsi trouvé des conditions optimales pour minimiser ou empêcher ces artefacts. Un modèle amélioré du processus de coupe et une redéfinitions des artefacts de coupe sont proposés. Les résultats obtenus sous ces conditions sont présentés et comparés aux résultats obtenus avec les méthodes conventionnelles. Abstract Water is often considered to be an ordinary substance since it is transparent, odourless, tasteless and it is very common in nature. As a matter of fact it can be argued that it is the most remarkable of all substances. Without water life on Earth would not exist. Water is the major component of cells, typically forming 70 to 95% of cellular mass and it provides an environment for innumerable organisms to live in, since it covers 75% of Earth surface. Water is a simple molecule made of two hydrogen atoms and one oxygen atom, H2O. The small size of the molecule stands in contrast with its unique physical and chemical properties. Among those the fact that, at the triple point, liquid water is denser than ice is especially remarkable. Despite its special importance in life science, water is systematically removed from biological specimens investigated by electron microscopy. This is because the high vacuum of the electron microscope requires that the biological specimen is observed in dry conditions. For 50 years the science of electron microscopy has addressed this problem resulting in numerous preparation techniques, presently in routine use. Typically these techniques consist in fixing the sample (chemically or by freezing), replacing its water by plastic which is transformed into rigid block by polymerisation. The block is then cut into thin sections (c. 50 nm) with an ultra-microtome at room temperature. Usually, these techniques introduce several artefacts, most of them due to water removal. In order to avoid these artefacts, the specimen can be frozen, cut and observed at low temperature. However, liquid water crystallizes into ice upon freezing, thus causing severe damage. Ideally, liquid water is solidified into a vitreous state. Vitrification consists in solidifying water so rapidly that ice crystals have no time to form. A breakthrough took place when vitrification of pure water was discovered. Since this discovery, the thin film vitrification method is used with success for the observation of biological suspensions of. small particles. Our work was to extend the method to bulk biological samples that have to be vitrified, cryosectioned into vitreous sections and observed in cryo-electron microscope. This technique is called cryo-electron microscopy of vitreous sections (CEMOVIS). It is now believed to be the best way to preserve the ultrastructure of biological tissues and cells very close to the native state for electron microscopic observation. Since recently, CEMOVIS has become a practical method achieving excellent results. It has, however, some sever limitations, the most important of them certainly being due to cutting artefacts. They are the consequence of the nature of vitreous material and the fact that vitreous sections cannot be floated on a liquid as is the case for plastic sections cut at room temperature. The aim of the present work has been to improve our understanding of the cutting process and of cutting artefacts, thus finding optimal conditions to minimise or prevent these artefacts. An improved model of the cutting process and redefinitions of cutting artefacts are proposed. Results obtained with CEMOVIS under these conditions are presented and compared with results obtained with conventional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To evaluate the diagnostic capacity of abdominal computed tomography in the assessment of hepatic steatosis using the portal phase with a simplified calculation method as compared with the non-contrast-enhanced phase. Materials and Methods In the present study, 150 patients were retrospectively evaluated by means of non-contrast-enhanced and contrast-enhanced computed tomography. One hundred patients had hepatic steatosis and 50 were control subjects. For the diagnosis of hepatic steatosis in the portal phase, the authors considered a result of < 104 HU calculated by the formula [L - 0.3 × (0.75 × P + 0.25 × A)] / 0.7, where L, P and A represent the attenuation of the liver, of the main portal vein and abdominal aorta, respectively. Sensitivity, specificity, positive and negative predictive values were calculated, using non-contrast-enhanced computed tomography as the reference standard. Results The simplified calculation method with portal phase for the diagnosis of hepatic steatosis showed 100% sensitivity, 36% specificity, negative predictive value of 100% and positive predictive value of 75.8%. The rate of false positive results was 64%. False negative results were not observed. Conclusion The portal phase presents an excellent sensitivity in the diagnosis of hepatic steatosis, as compared with the non-contrast-enhanced phase of abdominal computed tomography. However, the method has low specificity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fission yeast Schizosaccharomyces pombe has been an invaluable model system in studying the regulation of the mitotic cell cycle progression, the mechanics of cell division and cell polarity. Furthermore, classical experiments on its sexual reproduction have yielded results pivotal to current understanding of DNA recombination and meiosis. More recent analysis of fission yeast mating has raised interesting questions on extrinsic stimuli response mechanisms, polarized cell growth and cell-cell fusion. To study these topics in detail we have developed a simple protocol for microscopy of the entire sexual lifecycle. The method described here is easily adjusted to study specific mating stages. Briefly, after being grown to exponential phase in a nitrogen-rich medium, cell cultures are shifted to a nitrogen-deprived medium for periods of time suited to the stage of the sexual lifecycle that will be explored. Cells are then mounted on custom, easily built agarose pad chambers for imaging. This approach allows cells to be monitored from the onset of mating to the final formation of spores.