763 resultados para PEROVSKITE MANGANITES
Resumo:
The morphology, colour, fluorescence, cathodoluminescence, nitrogen content and aggregation state, internal structure and mineral inclusions have been studied for 69 alluvial diamonds from the Rio Soriso (Juina area, Mato Grosso State, Brazil). Nitrogen in most diamonds (53%) is fully aggregated as B centres, but there is also a large proportion of N-free stones (38%). A strong positive correlation between nitrogen and IR-active hydrogen concentrations is observed. The diamonds contain (in order of decreasing abundance) ferropericlase, CaSi-perovskite, magnetite, MgSi-perovskite, pyrrhotite, 'olivine', SiO2, perovskite, tetragonal almandine-pyrope phase and some other minerals represented by single grains. The Rio Soriso diamond suite is subdivided into several subpopulations that originated in upper and lower mantle of ultramafic and mafic compositions, with the largest subgroup forming in the ultramafic lower mantle. Analysed ferropericlase grains are enriched in Fe (Mg#=0.43-0.89), which is ascribed to their origin in the lowermost mantle. The Juina kimberlites may be unique in sampling the material from depths below 1,700 km that ascended in a plume formed at the core-mantle boundary.
Resumo:
The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.
Resumo:
High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.
Resumo:
A new ternary interstitial nitride Ni2W3N has been synthesized by the ammonolysis of different oxide precursors and characterized by powder X-ray diffraction and electron microscopy. This nitride crystallizes in the cubic space group P4(1)32(213) [Ni2W3N, a=6.663(1) Angstrom, Z=4] and is isostructural with Al2Mo3C. This compound belongs to the rare class of intermetallic ternary nitrides and carbides crystallizing with a filled beta-Mn structure. Ni2W3N is not stable, it decomposes to a new compound NiW3N related to the distorted anti-perovskite, Ca3AsN structure.
Resumo:
Transition-metal oxides at the metal-insulator boundary, especially those belonging to the perovskite family, exhibit fascinating phenomena such as insulator-metal transitions controlled by composition, high-temperature superconductivity and giant magnetoresistance (GMR), Interestingly, many of these marginally metallic oxides obey the established criteria for metallicity and have a finite density of states at the Fermi;level. The perovskite manganates exhibiting GMR, on the other hand, are unusual in that they possess very high resistivities in the 'metallic' state and show no significant density of states at the Fermi level, Marginal metallicity in oxide systems is a problem of great complexity and contemporary interest and its understanding is of crucial significance to the diverse phenomena exhibited by these materials.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Direct precipitation of fine powders of lead zirconate titanate (PZT) in the complete range of solid solution, is investigated under hydrothermal conditions, starting from lead oxide and titania/zirconia mixed gels. The perovskite phase is formed in the temperature range of 165 – 340°C. Sequence of the hydrothermal reactions is studied by identifying the intermediate phases. The initial formation of PbO: TiO2 solid solution is followed by the reaction of the same with the remaining mixed gels giving rise to X-ray amorphous PZT phase. Further, through crystallite growth, the X-ray crystalline PZT is formed. This method can be extended for the preparation of PLZT powder as well. The resulting powders are sinterable to high density ceramics.
Resumo:
The composition-controlled metal-insulator transition in the perovskite systems LaNi1-xMxO3 (M = Cr, Mn, Fe, and Co) has been investigated by transport measurements over the temperature range 12-300 K. These systems, which have critical electron densities (nc) in the range (1-2) -1020 electrons cm-3, exhibit sharp metal-insulator transitions at the base temperature. The corresponding minimum metallic conductivity (Ï-min), separating the localized and itinerant electronic regimes, is of the order of 102 ohm-1 cm-1. Particular attention is paid to the idea of Ï-min scaling with nc, and our present results are compared with earlier studies of the metal-insulator transition in low (e.g., Ge:Sb) and high (e.g., metal-ammonia, supercritical Hg) electron-density systems. A link is established between the transport and magnetic properties of the title systems at the metal-insulator transition.
Resumo:
Spin-state equilibria in the whole set of LCoO3 (where L stands for a rare-earth metal or Y) have been investigated with the use of 59Co NMR as a probe for the polycrystalline samples (except Ce) in the temperature interval 110-550 K and frequency range 3- 11.6 MHz. Besides confirming the coexistence of the high-spin—low-spin state in this temperature range, a quadrupolar interaction of ∼0.1 -0.5 MHz has been detected for the first time from 59Co NMR. The NMR line shape is found to depend strongly on the relative magnitude of the magnetic and quadrupolar interactions present. Analysis of the powder pattern reveals two basically different types of transferred hyperfine interaction between the lighter and heavier members of the rare-earth series. The first three members of the lighter rare-earth metals La, Pr (rhombohedral), and Nd (tetragonal), exhibit second-order quadrupolar interaction with a zero-asymmetry parameter at lower temperatures. Above a critical temperature TS (dependent on the size of the rare-earth ion), the quadrupolar interaction becomes temperature dependent and eventually gives rise to a first-order interaction thus indicating a possible second-order phase change. Sm and Eu (orthorhombic) exhibit also a second-order quadrupolar interaction with a nonzero asymmetry parameter ((η∼0.47)) at 300 K, while the orthorhombic second-half members (Dy,..., Lu and Y) exhibit first-order quadrupolar interaction at all temperatures. Normal paramagnetic behavior, i.e., a linear variation of Kiso with T-1, has been observed in the heavier rare-earth cobaltites (Er,..., Lu and Y), whereas an anomalous variation has been observed in (La,..., Nd)CoO3. Thus, Kiso increases with increasing temperature in PrCoO3 and NdCoO3. These observations corroborate the model of the spin-state equilibria in LCoO3 originally proposed by Raccah and Goodenough. A high-spin—low-spin ratio, r=1, can be stabilized in the perovskite structure by a cooperative displacement of the oxygen atoms from the high-spin towards the low-spin cation. Where this ordering into high- and low-spin sublattices occurs at r=1, one can anticipate equivalent displacement of all near-neighbor oxygen atoms towards a low-spin cobalt ion. Thus the heavier LCoO3 exhibits a small temperature-independent first-order quadrupolar interaction. Where r<1, the high- and low-spin states are disordered, giving rise to a temperature-dependent second-order quadrupolar interaction with an anomalous Kiso for the lighter LCoO3.
Resumo:
Attempts to prepare BaSnO3 by the hydrothermal method starting from SnO2·xH2O gel and Ba (OH)2 solution in teflonlined autoclaves at 150–260°C invariably lead to the formation of a hydrated phase, BaSn(OH)6·3H2O. On heating in air or on releasing the pressure Image at ≈260°C, BaSN (OH)6·3H2O converts to BaSnO3 fine powder which involves the formation of an intermediate oxyhydroxide, BaSnO(OH)4. TEM studies show that particle size of the resulting BaSnO3 ranges from 0.2–0.6 μm. Solid solutions of Ba(Ti, Sn) O3 were prepared from (TiO2+SnO2)·xH2O mixed gel and Ba(OH)2 solutions. Single-phase perovskite Ba(Ti, Sn)O3 was obtained up to 35 atom % Sn. Above this composition, the hydrothermal products are mixtures of BaTiO3 (cubic) and BaSn(OH)6·3H2O which on heating at ≈260°C give rise to BaTiO3+BaSnO3. Annealing at 1000°C results in monophasic Ba(Ti, Sn)O3, in the complete range of Sn/Ti. Formation of the hydrated phase is attributed to the amphoteric nature of SnO2·xH2O gel which stabilises Sn(OH)62− anions under higher H2O-pressures and elevated temperatures. The sintering characteristics and dielectric properties of ceramics prepared from these fine powders are presented.
Resumo:
Quasi-two-dimensional oxides of the La,+,Sr,+,Mn04 system, possessing the KZNiF4 structure, show no evidence for ferromagnetic ordering in contrast to the corresponding three-dimensional La,+.Sr,MnO~ perovskites. Instead, there is an increasing tendency toward antiferromagnetic ordering with mcreasmg x m La,+,Sr,,, MnOp. Furthermore, these oxides are relatively high-resistivity materials over the entire compositional range. Substitution of Ba for Sr in La&r,.5Mn04 decreases the ferromagnetic interaction. Increasing the number of perovskite layers in SrO (La,-,Sr,MnO& causes an increase in electrical conductivity as well as ferromagnetic interaction. The oxide becomes a highly conducting ferromagnet when n 2 2.
Resumo:
Using first-principles density-functional calculations, we determine and analyze the Born effective charges Z(*) that describe the coupling between electric field and atomic displacements for ferromagnetic double-perovskite compound, La2NiMnO6. We find that th Born effective charge matrix of Ni in La2NiMnO6, has an anomalously large antisymmetric component, whose magnitude reduces substantially upon change in the magnetic ordering between Ni and Mn, showing it to be a magnetism-dependent electrostructural coupling. We use a local picture of the electronic structure obtained with Wannier functions, along with its band-by-band decomposition to determine its electronic origin.
Resumo:
Reaction of bismuth metal with WO$_3$ in the absence of oxygen yields interesting bronze-like phases. From analytical electron microscopy and X-ray photoelectron spectroscopy, the product phases are found to have the general composition Bi$_x$ WO$_3$ with bismuth in the 3+ state. Structural investigations made with high resolution electron micrscopy and cognate techniques reveal that when x < 0.02, a perovskite bronze is formed. When x $\geqslant$ 0.02, however, intergrowth tungsten bronzes (i.t.b.) containing varying widths of the WO$_3$ slab are formed, the lattice periodicity being in the range 2.3-5.1 nm in a direction perpendicular to the WO$_3$ slabs. Image-matching studies indicate that the bismuth atoms are in the tunnels of the hexagonal tungsten bronze (h.t.b.) strips and the h.t.b. strips always remain one-tunnel wide. Annealed samples show a satellite structure around the superlattice spots in the electron diffraction patterns, possibly owing to ordering of the bismuth atoms in the tunnels. The i.t.b. phases show recurrent intergrowths extending up to 100 nm in several crystals. The periodicity varies considerably within the same crystal wherever there is disordered intergrowth, but unit cell dimensions can be assigned from X-ray and electron diffraction patterns. The maximum value of x in the i.t.b. phases is ca. 0.07 and there is no evidence for the i.t.b. phase progressively giving way to the h.t.b. phase with increase in x. Hexagonal tungsten bronzes that contain bismuth with x up to 0.02 can be formed by starting from hexagonal WO$_3$, but the h.t.b. phase seems to be metastable. Optical, magnetic and electron transport properties of the i.t.b. phases have been measured and it appears that the electrons become itinerant when x > 0.05.
Resumo:
We have investigated the structure, magnetic and dielectric properties of the double perovskite oxides, R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho and Y). We could refine powder X-ray diffraction patterns of all the phases on the basis of monoclinic (P2(1)/n) double perovskite structure where Ni and Mn atoms are ordered at 2c and 2d sites, respectively. All the phases are ferromagnetic insulators exhibiting relatively low dielectric loss and dielectric constants in the range 15-25. The ferromagnetic ordering temperature of the R2NiMnO6 series seems to correlate better with the radius of R3+ atoms than with the average Ni-O-Mn angle (phi) in the double perovskite structure. These results are consistent with all samples having Mn4+ and Ni2+ With minimal antisite disorder.