995 resultados para PERIPHERAL NEUROPATHIC PAIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To determine whether paraspinal block reduces pain scores compared to placebo in women with chronic pelvic pain refractory to drug therapy.METHODS: Subjects with chronic pelvic pain due to benign conditions and refractory to drug therapy were invited to participate in a randomized, double blind, superiority trial at a tertiary reference center. Subjects were randomly allocated to receive paraspinal anesthetic block with 1% lidocaine without epinephrine or placebo (control). Lidocaine was injected along the spinal process of the painful segment in the supra- and interspinal ligaments using a 25G X 2" needle. Placebo consisted of introduction of the needle in the same segment without injecting any substance. The main outcome measured was the pain score based on a visual analog scale at T0 (baseline), T1 (within 15 min after the procedure) and T2 (one week after the procedure). Data were statistically analyzed by ANOVA and the 95% confidence interval (95%CI).RESULTS: Mean age was similar for both groups, i.e., 51.2 (paraspinal anesthetic block) and 51.8 years (control). A blind examiner measured the degree of pain according to the visual analog scale from 0 (no pain) to 10 (worst pain imaginable). Based on the visual analog scale, the mean pain scores of the paraspinal anesthetic block group at T0, T1 and T2 were 5.50 (SD=2.92; 95%CI 3.84-7.15), 2.72 (SD=2.10; 95%CI 1.53-3.90), and 4.36 (SD=2.37; 95%CI 1.89-6.82), respectively. The difference between T0 and T1 was statistically significant, with p=0.03.CONCLUSIONS:Paraspinal anesthetic block had a small effect on visual analog scale pain score immediately after the injections, but no sustained benefit after one week. Further studies are needed to determine the efficacy of paraspinal anesthetic block with different lidocaine doses for the treatment of visceral pain of other causes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Local anesthetic efficacy of tramadol has been reported following intradermal application. Our aim was to investigate the effect of perineural tramadol as the sole analgesic in two pain models. Male Wistar rats (280-380 g; N = 5/group) were used in these experiments. A neurostimulation-guided sciatic nerve block was performed and 2% lidocaine or tramadol (1.25 and 5 mg) was perineurally injected in two different animal pain models. In the flinching behavior test, the number of flinches was evaluated and in the plantar incision model, mechanical and heat thresholds were measured. Motor effects of lidocaine and tramadol were quantified and a motor block score elaborated. Tramadol, 1.25 mg, completely blocked the first and reduced the second phase of the flinching behavior test. In the plantar incision model, tramadol (1.25 mg) increased both paw withdrawal latency in response to radiant heat (8.3 ± 1.1, 12.7 ± 1.8, 8.4 ± 0.8, and 11.1 ± 3.3 s) and mechanical threshold in response to von Frey filaments (459 ± 82.8, 447.5 ± 91.7, 320.1 ± 120, 126.43 ± 92.8 mN) at 5, 15, 30, and 60 min, respectively. Sham block or contralateral sciatic nerve block did not differ from perineural saline injection throughout the study in either model. The effect of tramadol was not antagonized by intraperitoneal naloxone. High dose tramadol (5 mg) blocked motor function as well as 2% lidocaine. In conclusion, tramadol blocks nociception and motor function in vivo similar to local anesthetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonsteroidal anti-inflammatory drugs (NSAIDs) have been used extensively to control inflammatory pain. Several peripheral antinociceptive mechanisms have been described, such as opioid system and NO/cGMP/KATP pathway activation. There is evidence that the cannabinoid system can also contribute to the in vivo pharmacological effects of ibuprofen and indomethacin. However, there is no evidence of the involvement of the endocannabinoid system in the peripheral antinociception induced by NSAIDs. Thus, the aim of this study was to investigate the participation of the endocannabinoid system in the peripheral antinociceptive effect of NSAIDs. All experiments were performed on male Wistar rats (160-200 g; N = 4 per group). Hyperalgesia was induced by a subcutaneous intraplantar (ipl) injection of prostaglandin E2 (PGE2, 2 μg/paw) in the rat’s hindpaw and measured by the paw pressure test 3 h after injection. The weight in grams required to elicit a nociceptive response, paw flexion, was determined as the nociceptive threshold. The hyperalgesia was calculated as the difference between the measurements made before and after PGE2, which induced hyperalgesia (mean = 83.3 ± 4.505 g). AM-251 (80 μg/paw) and AM-630 (100 μg/paw) were used as CB1 and CB2 cannabinoid receptor antagonists, respectively. Ipl injection of 40 μg dipyrone (mean = 5.825 ± 2.842 g), 20 μg diclofenac (mean = 4.825 ± 3.850 g) and 40 μg indomethacin (mean = 6.650 ± 3.611 g) elicited a local peripheral antinociceptive effect. This effect was not antagonized by ipl CB1 cannabinoid antagonist to dipyrone (mean = 5.00 ± 0.9815 g), diclofenac (mean = 2.50 ± 0.8337 g) and indomethacin (mean = 6.650 ± 4.069 g) or CB2 cannabinoid antagonist to dipyrone (mean = 1.050 ± 6.436 g), diclofenac (mean = 6.675 ± 1.368 g) and indomethacin (mean = 2.85 ± 5.01 g). Thus, cannabinoid receptors do not seem to be involved in the peripheral antinociceptive mechanism of the NSAIDs dipyrone, diclofenac and indomethacin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modification of the Bennett and Xie chronic constriction injury model of peripheral painful neuropathy was developed in rats. Under tribromoethanol anesthesia, a single ligature with 100% cotton glace thread was placed around the right sciatic nerve proximal to its trifurcation. The change in the hind paw reflex threshold after mechanical stimulation observed with this modified model was compared to the change in threshold observed in rats subjected to the Bennett and Xie or the Kim and Chung spinal ligation models. The mechanical threshold was measured with an automated electronic von Frey apparatus 0, 2, 7, and 14 days after surgery, and this threshold was compared to that measured in sham rats. All injury models produced significant hyperalgesia in the operated hind limb. The modified model produced mean ± SD thresholds in g (19.98 ± 3.08, 14.98 ± 1.86, and 13.80 ± 1.00 at 2, 7, and 14 days after surgery, respectively) similar to those obtained with the spinal ligation model (20.03 ± 1.99, 13.46 ± 2.55, and 12.46 ± 2.38 at 2, 7, and 14 days after surgery, respectively), but less variable when compared to the Bennett and Xie model (21.20 ± 8.06, 18.61 ± 7.69, and 18.76 ± 6.46 at 2, 7, and 14 days after surgery, respectively). The modified method required less surgical skill than the spinal nerve ligation model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts. [References: 28]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TRPA1 is an excitatory ion channel expressed by a subpopulation of primary afferent somatosensory neurons that contain substance P and calcitonin gene-related peptide. Environmental irritants such as mustard oil, allicin, and acrolein activate TRPA1, causing acute pain, neuropeptide release, and neurogenic inflammation. Genetic studies indicate that TRPA1 is also activated downstream of one or more proalgesic agents that stimulate phospholipase C signaling pathways, thereby implicating this channel in peripheral mechanisms controlling pain hypersensitivity. However, it is not known whether tissue injury also produces endogenous proalgesic factors that activate TRPA1 directly to augment inflammatory pain. Here, we report that recombinant or native TRPA1 channels are activated by 4-hydroxy-2-nonenal (HNE), an endogenous alpha,beta-unsaturated aldehyde that is produced when reactive oxygen species peroxidate membrane phospholipids in response to tissue injury, inflammation, and oxidative stress. HNE provokes release of substance P and calcitonin gene-related peptide from central (spinal cord) and peripheral (esophagus) nerve endings, resulting in neurogenic plasma protein extravasation in peripheral tissues. Moreover, injection of HNE into the rodent hind paw elicits pain-related behaviors that are inhibited by TRPA1 antagonists and absent in animals lacking functional TRPA1 channels. These findings demonstrate that HNE activates TRPA1 on nociceptive neurons to promote acute pain, neuropeptide release, and neurogenic inflammation. Our results also provide a mechanism-based rationale for developing novel analgesic or anti-inflammatory agents that target HNE production or TRPA1 activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human functional imaging provides a correlative picture of brain activity during pain. A particular set of central nervous system structures (eg, the anterior cingulate cortex, thalamus, and insula) consistently respond to transient nociceptive stimuli causing pain. Activation of this so-called pain matrix or pain signature has been related to perceived pain intensity, both within and between individuals,1,2 and is now considered a candidate biomarker for pain in medicolegal settings and a tool for drug discovery. The pain-specific interpretation of such functional magnetic resonance imaging (fMRI) responses, although logically flawed,3,4 remains pervasive. For example, a 2015 review states that “the most likely interpretation of activity in the pain matrix seems to be pain.”4 Demonstrating the nonspecificity of the pain matrix requires ruling out the presence of pain when highly salient sensory stimuli are presented. In this study, we administered noxious mechanical stimuli to individuals with congenital insensitivity to pain and sampled their brain activity with fMRI. Loss-of-function SCN9A mutations in these individuals abolishes sensory neuron sodium channel Nav1.7 activity, resulting in pain insensitivity through an impaired peripheral drive that leaves tactile percepts fully intact.5 This allows complete experimental disambiguation of sensory responses and painful sensations

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3K gamma/AKT protein kinase B (AKT) and culminated in increasedactivation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporomandibular disorders represent one of the major challenges in dentistry therapeutics. This study was undertaken to evaluate the time course of carrageenan-induced inflammation in the rat temporomandibular joint (TMJ) and to investigate the role of tachykinin NK(1) receptors. Inflammation was induced by a single intra-articular (i.art.) injection of carrageenan into the left TMJ (control group received sterile saline). Inflammatory parameters such as plasma extravasation, leukocyte influx and mechanical allodynia (measured as the head-withdrawal force threshold) and TNF alpha and IL-1 beta concentrations were measured in the TMJ lavages at selected time-points. The carrageenan-induced responses were also evaluated after treatment with the NK(1) receptor antagonist SR140333. The i.art. injection of carrageenan into the TMJ caused a time-dependent plasma extravasation associated with mechanical allodynia, and a marked neutrophil accumulation between 4 and 24 h. Treatment with SR140333 substantially inhibited the increase in plasma extravasation and leukocyte influx at 4 and 24 h, as well as the production of TNF alpha and IL-1 beta into the joint cavity, but failed to affect changes in head-withdrawal threshold. The results obtained from the present TMJ-arthritis model provide, for the first time, information regarding the time course of this experimental inflammatory process. In addition, our data show that peripheral NK(1) receptors mediate the production of both TNF alpha and IL-1 beta in the TMJ as well as some of the inflammatory signs, such as plasma extravasation and leukocyte influx, but not the nociceptive component. 2008 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to evaluate and correlate the vascular, sensory and motor components related to the plantar surface in individuals with diabetic peripheral neuropathy. 68 patients were categorized into two groups: 28 in the neuropathic group and 40 in the control group. In each patient, we assessed: circulation and peripheral perfusion of the lower limbs; somatosensory sensitivity; ankle muscle strength; and pressure on the plantar surface in static, dynamic and gait states. We used the Mann-Whitney test and analysis of variance (ANOVA and MANOVA) for comparison between groups, and performed Pearson and Spearman linear correlations amongst the variables (P < 0.05). The somatosensory sensitivity, peripheral circulation and ankle muscle strength were reduced in the neuropathic group. In full peak plantar pressures, no differences were seen between groups, but differences did appear when the foot surface was divided into regions (forefoot, midfoot and hindfoot). In the static condition, the plantar surface area was greater in the neuropathic group. In the dynamic state, peak pressures in the neuropathic group, were higher in the forefoot and lower in the hindfoot, as well as lower in the hindfoot during gait. There were positive or negative correlations between the sensitivity deficit, dorsal ankle flexor strength, plantar surface area, and peak pressure by plantar region. The sensitivity deficit contributed to the increased plantar surface area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Objective: To estimate the concentration of natural killer (NK) cells in the peripheral blood in patients with and without endometriosis. Design: Case-control study (Canadian Task Force classification II-2). Setting: Tertiary referral hospital. Patients: One hundred fifty-five patients who had undergone videolaparoscopy were divided into 2 groups: those with endometriosis (n = 100) and those without endometriosis (n = 55). Interventions: The percentage of NK cells relative to peripheral lymphocytes was quantified at flow cytometry in 155 patients who had undergone laparoscopy. In addition to verifying the presence of endometriosis, stage of disease and the sites affected were also evaluated. Measurements and Main Results: The mean (SD) percentage of NK cells was higher (15.3% [9.8%]) in patients with endometriosis than in the group without the disease (10.6% [5.8%]) (p < .001). The percentage of NK cells was highest (19.8 [10.3%]) in patients with advanced stages of endometriosis and in those in whom the rectosigmoid colon was affected. In a statistical model of probability, the association of this marker (NK cells >= 11%) with the presence of symptoms such as pain and intestinal bleeding during menstruation and the absence of previous pregnancy yielded a 78% likelihood of the rectosigmoid colon being affected. Conclusion: Compared with patients without endometriosis, those with endometriosis demonstrate a higher concentration of peripheral NK cells. The percentage of NK cells is greater, primarily in patients with advanced stages of endometriosis involving the rectosigmoid colon. Therefore, it may serve as a diagnostic marker for this type of severe endometriosis, in particular if considered in conjunction with the symptoms. Journal of Minimally Invasive Gynecology (2012) 19, 317-324 (C) 2012 AAGL. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.