992 resultados para Oxygen concentrations


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved organic carbon (DOC) and nitrogen (DON) were measured during early austral Spring 1992 at a number of stations along the 6°W meridian between 47° and 60°S. This included the Polar Front in the north, the zone of melting sea-ice in the south, and waters of the Antarctic Circumpolar Current in between. Concentrations of DOC were low in deep water (34-38 ?M) with generally similar or slightly higher values in the surface mixed layer (38-55 ?M). DOC:DON ratios are wider in surface water than in deep water, i.e. surface accumulations contain relatively C-rich dissolved organic matter. The highly variable distribution of the surface DOC was not related to hydrographic or biotic features (fronts, plankton development) indicating the lability and transient occurrence of this material. Growth rates of bacteria were determined in subsamples from 51 0.8-?m-filtered batches of seawater incubated in the dark at in-situ temperature. Thymidine and leucine uptake and bacterial biomass change as well as changes in dissolved organic carbon in the batches, and oxygen consumption in parallel incubations correlated linearly over 2 weeks of incubation which allowed extrapolation to in-situ conditions. Bacterial growth in these experiments depended strongly on the amount of initial DOC. Growth in water from greater depth (1000 m) containing 38 ?M DOC was minimal, as were DOC-decrease and oxygen consumption. Higher rates were observed in surface water slightly enriched with DOC, and highest rates in surface water amended with DOC-rich melted sea ice. Bacterial growth efficiencies (biomass C-increase vs DOC consumed) were about 30%. The experiments showed that at least 40-60% of the DOC in excess of deep water concentrations was available to bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the 'snow-sea ice-seawater' continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (Hg(T)) concentrations varied from 0.63 to 2.76 pmol/L with 'transient-type' vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean Hg(T) concentrations (1.35 ± 0.39 pmol/L) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol/L). Labile Hg (Hg(R)) concentrations varied from 0.01 to 2.28 pmol/L, with a distribution showing that the Hg(T) enrichment south of the SPF consisted mainly of Hg(R) (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHg(T)) concentrations ranged from 0.02 to 0.86 pmol/L. All vertical MeHg(T) profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for Hg(T), low mean MeHg(T) concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHg(T) concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHg(T) vs Apparent Oxygen Utilization (AOU) relationship (p <0.001). The proportion of Hg(T) as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station Hg(T) and Hg(R) concentrations found in the 'snow-sea ice-seawater' continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of Hg(T) there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHg(T) concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol/L. The MeHg(T) vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas Hg(T) concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010; doi:10.1021/es903839n), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High resolution stratigraphy based on oxygen isotope ratios of the planktonic foraminifers Neogloboquadrina dutertrei (d'Orbigny), Globigeriniodes ruber (d'Orbigny), and Globigerina bulloides (d'Orbigny), magnetic susceptibility, and calcium carbonate content covers the sedimentary record of ODP Hole 728A drilled on the Oman Margin from approximately 10 k.y. to 525 k.y., comprising isotopic stages 1-13. Below stage 13 isotopic stage boundaries cannot be defined with certainty in our data. Sediment accumulation rates were calculated from the isotopic record of N. dutertrei by matching it with the age model SPECMAP curve. During the glacial periods sediment accumulation rates were higher than during the interglacial periods, reflecting increased input from the shelf during low-stands of sea level and increased eolian input. Periodograms for the past 524 k.y. on oxygen isotope records of N. dutertrei, G. ruber, and G. bulloides, on calcium carbonate content, magnetic susceptibility, and on a foraminiferal fragmentation record show powers matching the Milankovitch periodicities. High powers are concentrated around 103 k.y. In the spectra of oxygen isotope ratios of N. dutertrei, magnetic susceptibility, and foraminiferal fragmentation these are significant at the 80% confidence level with respect to a first order autoregressive model. Power concentrations near 43 k.y., matching obliquity, are present but subdued in all spectra. Power concentrations near 23 k.y., matching precession, are significant in the spectra of the oxygen isotope record of N. dutertrei, magnetic susceptibility, and calcium carbonate content record. Fragmentation of planktonic foraminifers increased during the interglacial periods. This is attributed to dissolution of the tests in an expanded oxygen minimum zone (OMZ), where undersaturation of calcium carbonate is caused by enhanced production in the euphotic zone, which would suggest stronger monsoonal induced upwelling during interglacial periods. Extension of the OMZ could also be increased by outflow of low oxygen marginal basin bottom water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform d18O with an average value of 5.2 ± 0.5 per mil (2SD). The average d18O(Zrc) would be in magmatic equilibrium with unaltered MORB [d18O(WR) ~5.6-5.7 per mil], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured d18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like d18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith d18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated d18O (6.0-7.5 per mil), but such values have not been identified in any zircons from the large sample suite examined here. The difference in d18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Continuous measurements between 0 and 200 m depth were performed every 2 h over two separate periods of four days at a station in the open northwestern Mediterranean Sea (Dyfamed Station) during the Dynaproc cruise in May 1995. Estimates of the daily variations in profiles of temperature, partial pressure of CO2, oxygen, chlorophyll a and nutrients were obtained. The distributions of the various physical and chemical properties were clearly different during the two time series, which were separated by a period of 11 days during which a wind event occurred. The mean daily utilization or production due to biological processes of dissolved inorganic carbon (DIC), nitrate+nitrite and oxygen were calculated along isopycnals using a vertical diffusion model. Between the surface and about 20 m depth, DIC was consumed and O2 released during the two time series while the nitrate+nitrite concentrations as well as supplies were zero. After the wind event, the O2 : C : N ratios of consumption (or production) were, on average, near the Redfield ratios, but during the first time series, the C : N utilization ratio between 20 and 35 m was two to three times that of Redfield stoichiometry and the oxygen release was low. The integrated net community production (NCP) in terms of carbon was equivalent during the two time series, whereas the chlorophyll a biomass was twice as high, on average, during the first time series but did decrease. These results imply that the production systems were different during the two periods. The first time series corresponds to a period at the end of production, due to the nutrient depletion in the euphotic layer. The formation of degradation products of the living material in dissolved organic form is probably important as indicated by the high C : N utilization ratios. The second time series corresponds to a reactivation of the primary production due to the upward shift of nutrients after the wind event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotopes in marine sulfate (d18O SO4) measured in marine barite show variability over the past 10 million years, including a 5per mil decrease during the Plio-Pleistocene, with near-constant values during the Miocene that are slightly enriched over the modern ocean. A numerical model suggests that sea level fluctuations during Plio-Pleistocene glacial cycles affected the sulfur cycle by reducing the area of continental shelves and increasing the oxidative weathering of pyrite. The data also require that sulfate concentrations were 10 to 20% lower in the late Miocene than today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cretaceous and Paleogene sediments recovered during Ocean Drilling Program Leg 207 can be divided into three broad modes of deposition: synrift clastics (lithologic Unit V), organic matter-rich, laminated black shales (Unit IV), and open-marine chalk and calcareous claystones (Units III-I). The aim of this study is to provide a quantitative geochemical characterization of sediments representing these five lithologic units. For this work we used the residues (squeeze cakes) obtained from pore water sampling. Samples were analyzed for bulk parameters (total inorganic carbon, total organic carbon, and S) and by X-ray fluorescence for major (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, and P) and selected minor (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Rb, Sr, U, V, Y, Zn, and Zr) elements. Inductively coupled plasma-mass spectrometry analyses for rare earth elements (REEs) were performed on acid digestions of the squeeze cake samples from Site 1258. The major element composition is governed by the mixture of a terrigenous detrital component of roughly average shale (AS) composition with biogenous carbonate and silica. The composition of the terrigenous detritus is close to AS in Units II-IV. For Unit I, a more weathered terrigenous source is suggested. Carbonate contents reach >60 wt% on average in chalks and calcareous claystones of Units II-IV. The SiO2 contribution in excess of the normal terrigenous-detrital background indicates the presence of biogenous silica, with highest amounts in Units II and III. The contents of coarse-grained material (quartz) are enhanced in Unit V, where Ti and Zr contents are also high. This indicates a high-energy depositional environment. REE patterns are generally similar to AS. A more pronounced negative Ce anomaly in Unit IV may indicate low-oxygen conditions in the water column. The Cretaceous black shales of Unit IV are clearly enriched in redox-sensitive and stable sulfide-forming elements (Mo, V, Zn, and As). High phosphate contents point toward enhanced nutrient supply and high bioproductivity. Ba/Al ratios are rather high throughout Unit IV despite the absence of sulfate in the pore water, indicating elevated primary production. Manganese contents are extremely low for most of the interval studied. Such an Mn depletion is only possible in an environment where Mn was mobilized and transported into an expanded oxygen minimum zone ("open system"). The sulfur contents show a complete sulfidation of the reactive iron of Unit IV and a significant excess of sulfur relative to that of iron, which indicates that part of the sulfur was incorporated into organic matter. We suppose extreme paleoenvironmental conditions during black shale deposition: high bioproductivity like in recent coastal upwelling settings together with severe oxygen depletion if not presence of hydrogen sulfide in the water column.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mineralogy of suspended matter from surface and bottom waters has been studied at two sites in the Barents Sea. Along with terrigenous minerals, particulate matter samples contain authigenic mineral phases of iron and manganese oxyhydroxides. Mn-feroxyhite, Fe-vernadite, goethite, and proto-ferrihydrite have been identified in samples from the surface waters, whereas birnessite and non-ferruginous vernadite have been found in samples from the bottom waters. Formation of suspended manganese minerals in the bottom waters is explained by an additional Mn supply from underlying reduced sediments during their early diagenesis and oxygen depletion in the near-bottom nepheloid layer. Bacteria are supposed to take part in the authigenic mineral formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleogene stable oxygen and carbon isotopes were measured in formainifera from ODP Sites 689 and 690 at Maud Rise in the Atlantic Ocean sector of the Southern Ocean, and from Sites 738, 744, 748 and 749 at the southern Kerguelen Plateau in the Indian Ocean sector. These data were compared with sedimentological data from the same sample set. Both benthic and planktic d18O values document a cooling trend beginning around 49.5 Ma at all sites. During the late middle Eocene planktic d18O values indicate a steepening latitudinal temperature gradient from 14°C at the northern sites towards 10°C at the southernmost sites. Terrigeneous sand grains of probably ice rafted origin and clay mineral assemblages point to the existence of a limited East Antarctic ice cap with some glaciers reaching sea level as early as middle Eocene time around 45.5 Ma. Between 45 and 40 Ma, average paleotemperatures were between 5° and 7°C in deep and intermediate water masses, while near-surface water masses ranged between 6° and 10°C. During the late Eocene, between 40 and 36 Ma, average temperatures further decreased to 4°-5°C in the deep and intermediate water masses and to 5°-8°C near the sea surface. Abruptly increasing d18O values at approximately 35.9 Ma exactly correlate with a sharp pulse in the deposition of ice-rafted material on the Kerguelen Plateau, a dramatic change in clay mineral composition, and an altered Southern Ocean circulation indicated by a differentiation of benthic d13C values between sites, increasing opal concentrations and decreasing carbonate contents. For planktic and benthic foraminifera this d18O increase ranges between 1.0 and 1.3 per mil, and between 0.9 and 1.4 per mil, respectively. We favour a hypothesis that explains most of the d18O shift at 35.9 Ma with a buildup of a continental East Antarctic ice sheet. Consequently, relatively warm Oligocene Antarctic surface water temperatures probably are explained by a temperate, wet-based nature of the ice sheet. This would also aid in the fast build-up of an ice sheet by enhancing the moisture transport on to the continent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples for total organic carbon (TOC) analysis were collected on WOCE Line P15S (0° to 67°S along 170°W) and from 53° to 67°S along 170°E in the western South Pacific, and on Line I8 (5°N to 43°S along 80°/90°E) in the central Indian Ocean. TOC concentrations in the upper ocean varied greatly between the regions studied. Highest surface TOC concentrations (81-85 µM C and 68-73 µM C) were observed in the warmest waters (>27°C) of the western South Pacific and central Indian Oceans, respectively. Lowest surface TOC concentrations (45-65 µM C) were recorded in the southernmost waters occupied (>50°S along 170°W and 170°E). Deep water (>1000 m) TOC concentrations were uniform across all regions analyzed, averaging between 42.3 and 43 µM C (SD: ±0.9 µM C). Mixing between TOC-rich surface waters and TOC-poor deep waters was indicated by the strong correlations between TOC and temperature (r2>0.80, north of 45°S) and TOC and density (r2>0.50, southernmost regions). TOC was inversely correlated with apparent oxygen utilization (AOU) along isopycnal surfaces north of the Polar Frontal Zone (PFZ) and at depths <500 m. The TOC:AOU molar ratios at densities of sigmaT 23-27 ranged from -0.15 to -0.34 in the South Pacific and from -0.13 to -0.31 in the Indian Ocean. These ratios indicate that TOC oxidation was responsible for 21%-47% and 18%-43% of oxygen consumption in the upper South Pacific and Indian Oceans, respectively. At greater depths, TOC did not contribute to the development of AOU. There was no evidence for significant export of dissolved and suspended organic carbon along isopycnal surfaces that ventilate near the PFZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperate, transitional and subtropical waters of the remote Azores Front region east of Azores (24-40°N, 22-32°W) were sampled during three cruises conducted under increasing stratification conditions (April 1999, May 1997 and August 1998). Despite the temporal increase of surface temperature (by 5 °C) and stratification (by 2.1 1/min**2), as well as the thermocline shoaling (by ~15 m), dissolved organic carbon (DOC) and nitrogen (DON) in the surface layer were not significantly different for the early spring, late spring and summer periods, with average concentrations of 69±2 µM-C and 5.2±0.4 µM-N, respectively. The surface excess of semi-labile DOC, compared with the baseline DOC concentration in the deep ocean (47±2 µM-C), represents 33% of the bulk DOC concentration and as much as 85% of the TOC (=POC+DOC) excess. When compared with the winter baseline (56±2 µM-C), the seasonal surface DOC excess is 20% of the bulk DOC concentration and 87% of the seasonal TOC excess. These results confirm the major role played by DOC in the carbon cycle of surface waters of the Azores Front region. The total amount of bioreactive DOC transported from the temperate to the subtropical North Atlantic by the Ekman flux between March and December represents only ~15% of the average annual primary production, and ~15% and ~30% of the measured sinking POC flux+vertical DOC eddy diffusion during early spring and summer, respectively. Vertical eddy diffusion is 35% and 2% of the spring and summer sinking POC flux, respectively. On the other hand, DOC only contributes 13% to the local oxidation of organic matter in subsurface waters (between the pycnocline and 500 m) of the study region.