977 resultados para Os Maias. Eça de Queirós


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altricial nestlings solicit food by begging and engaging in scramble competition. Solicitation displays can thus signal both hunger and competitive ability. I examined nestling solicitation and parental responses in crimson rosellas (Platycercus elegans), a species in which parents engage in complex patterns of food allocation and appear to control the distribution of food. By manipulating the hunger of individual chicks and entire broods, I assessed how chick behaviours and parental food allocation varied with hatching rank, level of hunger, and intensity of nestling competition. Last-hatched chicks begged more than first-hatched chicks irrespective of individual hunger levels. The two parents combined fed individually hungry chicks more, but mothers and fathers varied in their responses to begging chicks: fathers fed last-hatched chicks in proportion to their begging intensity, whereas mothers fed chicks equally. Since fathers generally allocate more food to first-hatched chicks, fathers appear to use begging rates to adjust food allocation to non-preferred chicks within the brood. When I manipulated brood hunger levels, begging rates increased for first- and last-hatched chicks suggesting that chick begging rates are sensitive to the level of competition. This study shows that begging by rosella chicks does not correlate with hunger in a straightforward way and that the primary patterns of food allocation by parents art: not influenced by chick begging. Thus the benefits of increased begging may be limited for nestlings in this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of Health-Related Quality of Life (HRQoL) of the elderly requires instruments with demonstrated sensitivity, reliability, and validity, particularly with the increasing proportion of older people entering the health care system. This article reports the psychometric properties of the 12-item Assessment of Quality of Life (AQoL) instrument in chronically ill community-dwelling elderly people with an 18-month follow-up. Comparator instruments included the SF-36 and the OARS. Construct validity of the AQoL was strong when examined via factor analysis and convergent and divergent validity against other scales. Receiver Operator Characteristic (ROC) curve analyses and relative efficiency estimates indicated the AQoL is sensitive, responsive, and had the strongest predicative validity for nursing home entry. It was also sensitive to economic prediction over the follow-up. Given these robust psychometric properties and the brevity of the scale, AQoL appears to be a suitable instrument for epidemiologic studies where HRQoL and utility data are required from elderly populations. (C) 2003 Elsevier Science Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arquitetura Corporativa promove o estabelecimento de uma visão holística da estrutura e forma de trabalho de uma organização. Um dos aspectos abordados em Arquitetura Corporativa está associada a "estrutura ativa" da organização, que diz respeito a “quem" realiza as atividades organizacionais. Várias abordagens têm sido propostas a fim de proporcionar um meio para a representação de Arquitetura Corporativa, entre as quais ARIS, RM-ODP, UPDM e ArchiMate. Apesar da aceitação por parte da comunidade, as abordagens existentes se concentram em propósitos diferentes, têm limitações de escopo e algumas não têm semântica de mundo real bem definida. Além das abordagens de modelagem, muitas abordagens de ontologias têm sido propostas, a fim de descrever o domínio de estrutura ativa, incluindo as ontologias de SUPER Project, TOVE, Enterprise Ontology e W3C Org Ontology. Embora especificadas para fundamentação semântica e negociação de significado, algumas das abordagens propostas têm fins específicos e cobertura limitada. Além disso, algumas das abordagens não são definidas usando linguagens formais e outras são especificadas usando linguagens sem semântica bem definida. Este trabalho apresenta uma ontologia de referência bem fundamentada para o domínio organizacional. A ontologia organizacional de referência apresentada abrange os aspectos básicos discutidos na literatura organizacional, tais como divisão do trabalho, relações sociais e classificação das unidades estruturais. Além disso, também abrange os aspectos organizacionais definidos em abordagens existentes, levando em consideração tanto abordagens de modelagem quanto abordagens ontológicas. A ontologia resultante é especificada em OntoUML e estende os conceitos sociais de UFO-C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A casca do fruto da mamoneira (CFM) é um resíduo gerado, em grande quantidade, no beneficiamento da mamona. O objetivo desta pesquisa foi avaliar as características físicas e químicas da CFM e seu efeito, como substrato, para plantas. A avaliação das características da CFM foi realizada em um experimento fatorial (2x3), constituído da combinação de dois tipos de casca (CFM in natura e compostada) e três granulometrias (peneiras 3, 5 e 10 mm de malha), em delineamento de blocos ao acaso. Os teores de macro e micronutrientes, condutividade elétrica (CE), pH, densidade seca (DS), densidade úmida (DU), porosidade total (PT) e espaço de aeração (EA) foram avaliados. A avaliação da CFM como substrato para plantas foi realizada, utilizando-se mudas de tomateiro (Lycopersicon esculentum Mill.) e estacas de pingo-de-ouro (Duranta repens L.) como espécies indicadoras. Para o cultivo de mudas de tomateiro, a CFM, na granulometria de 3 mm, in natura, ou compostada, foi misturada com Plantmax® em cinco proporções [0:100; 25:75; 50:50; 75:25; 100:0 (v/v)]. Para o enraizamentode pingo-de-ouro, estacas foram plantadas em CFM, in natura, ou compostada, de três granulometrias (3, 5 e 10 mm). A CFM compostada, na granulometria de 3 mm, apresentou as características físicas mais adequadas. A CFM in natura apresentou efeitos negativos, sendo inadequada como substrato. A CFM compostada permitiu obter 100% de germinação e mudas normais de tomateiro, bem como estacas enraizadas de pingo- de- ouro, podendo, portanto, ser utilizada como substrato, pura, ou em misturas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laparoscopy is a surgical procedure on which operations in the abdomen are performed through small incisions using several specialized instruments. The laparoscopic surgery success greatly depends on surgeon skills and training. To achieve these technical high-standards, different apprenticeship methods have been developed, many based on in vivo training, an approach that involves high costs and complex setup procedures. This paper explores Virtual Reality (VR) simulation as an alternative for novice surgeons training. Even though several simulators are available on the market claiming successful training experiences, their use is extremely limited due to the economic costs involved. In this work, we present a low-cost laparoscopy simulator able to monitor and assist the trainee’s surgical movements. The developed prototype consists of a set of inexpensive sensors, namely an accelerometer, a gyroscope, a magnetometer and a flex sensor, attached to specific laparoscopic instruments. Our approach allows repeated assisted training of an exercise, without time constraints or additional costs, since no human artificial model is needed. A case study of our simulator applied to instrument manipulation practice (hand-eye coordination) is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents Palco, a prototype system specifically designed for the production of 3D cartoon animations. The system addresses the specific problems of producing cartoon animations, where the main obj ective is not to reproduce realistic movements, but rather animate cartoon characters with predefined and characteristic body movements and facial expressions. The techniques employed in Palco are simple and easy to use, not requiring any invasive or complicated motion capture system, as both body motion and facial expression of actors are captured simultaneously, using an infrared motion detection sensor, a regular camera and a pair of electronically instrumented gloves. The animation process is completely actor-driven, with the actor controlling the character movements, gestures, facial expression and voice, all in realtime. The actor controlled cartoonification of the captured facial and body motion is a key functionality of Palco, and one that makes it specifically suited for the production of cartoon animations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, different techniques are available for manufacturing full-arch implant-supported prosthesis, many of them based on an impression procedure. Nevertheless, the long-term success of the prosthesis is highly influenced by the accuracy during such process, being affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of a 3D electromagnetic motion tracking system as an acquisition method for modeling such prosthesis. To this extent, we propose an implant acquisition method at the patient mouth, using a specific prototyped tool coupled with a tracker sensor, and a set of calibration procedures (for distortion correction and tool calibration), that ultimately obtains combined measurements of the implant’s position and angulation, and eliminating the use of any impression material. However, in the particular case of the evaluated tracking system, the order of magnitude of the obtained errors invalidates its use for this specific application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of the osseointegration concept and the Brånemark protocol is highly associated to the accuracy in the production of an implant-supported prosthesis. One of most critical steps for long-term success of these prosthesis is the accuracy obtained during the impression procedure, which is affected by factors such as the impression material, implant position, angulation and depth. This paper investigates the feasibility of 3D electromagnetic motion tracking systems as an acquisition method for modeling full-arch implant-supported prosthesis. To this extent, we propose an implant acquisition method at the patient mouth and a calibration procedure, based on a 3D electromagnetic tracker that obtains combined measurements of implant’s position and angulation, eliminating the use of any impression material. Three calibration algorithms (namely linear interpolation, higher-order polynomial and Hardy multiquadric) were tested to compensate for the electromagnetic tracker distortions introduced by the presence of nearby metals. Moreover, implants from different suppliers were also tested to study its impact on tracking accuracy. The calibration methodology and the algorithms employed proved to implement a suitable strategy for the evaluation of novel dental impression techniques. However, in the particular case of the evaluated electromagnetic tracking system, the order of magnitude of the obtained errors invalidates its use for the full-arch modeling of implant-supported prosthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laparoscopic surgery (LS) has revolutionized traditional surgical techniques introducing minimally invasive procedures for diagnosis and local therapies. LSs have undeniable advantages, such as small patient incisions, reduced postoperative pain and faster recovery. On the other hand, restricted vision of the anatomical target, difficult handling of the surgical instruments, restricted mobility inside the human body, need of dexterity to hand-eye coordination and inadequate and non-ergonomic surgical instruments may restrict LS only to more specialized surgeons. To overcome the referred limitations, this work presents a new robotic surgical handheld system – the EndoRobot. The EndoRobot was designed to be used in clinical practice or even as a surgical simulator. It integrates an electromechanical system with 3 degrees of freedom. Each degree can be manipulated independently and combined with different levels of sensitivity allowing fast and slow movements. As other features, the EndoRobot has battery power or external power supply, enables the use of bipolar radiofrequency to prevent bleeding while cutting and allows plug-and-play of the laparoscopic forceps for rapid exchange. As a surgical simulator, the system was also instrumented to measure and transmit, in real time, its position and orientation for a training software able to monitor and assist the trainee’s surgical movements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hand and finger tracking has a major importance in healthcare, for rehabilitation of hand function required due to a neurological disorder, and in virtual environment applications, like characters animation for on-line games or movies. Current solutions consist mostly of motion tracking gloves with embedded resistive bend sensors that most often suffer from signal drift, sensor saturation, sensor displacement and complex calibration procedures. More advanced solutions provide better tracking stability, but at the expense of a higher cost. The proposed solution aims to provide the required precision, stability and feasibility through the combination of eleven inertial measurements units (IMUs). Each unit captures the spatial orientation of the attached body. To fully capture the hand movement, each finger encompasses two units (at the proximal and distal phalanges), plus one unit at the back of the hand. The proposed glove was validated in two distinct steps: a) evaluation of the sensors’ accuracy and stability over time; b) evaluation of the bending trajectories during usual finger flexion tasks based on the intra-class correlation coefficient (ICC). Results revealed that the glove was sensitive mainly to magnetic field distortions and sensors tuning. The inclusion of a hard and soft iron correction algorithm and accelerometer and gyro drift and temperature compensation methods provided increased stability and precision. Finger trajectories evaluation yielded high ICC values with an overall reliability within application’s satisfying limits. The developed low cost system provides a straightforward calibration and usability, qualifying the device for hand and finger tracking in healthcare and animation industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Minimally invasive cardiovascular interventions guided by multiple imaging modalities are rapidly gaining clinical acceptance for the treatment of several cardiovascular diseases. These images are typically fused with richly detailed pre-operative scans through registration techniques, enhancing the intra-operative clinical data and easing the image-guided procedures. Nonetheless, rigid models have been used to align the different modalities, not taking into account the anatomical variations of the cardiac muscle throughout the cardiac cycle. In the current study, we present a novel strategy to compensate the beat-to-beat physiological adaptation of the myocardium. Hereto, we intend to prove that a complete myocardial motion field can be quickly recovered from the displacement field at the myocardial boundaries, therefore being an efficient strategy to locally deform the cardiac muscle. We address this hypothesis by comparing three different strategies to recover a dense myocardial motion field from a sparse one, namely, a diffusion-based approach, thin-plate splines, and multiquadric radial basis functions. Two experimental setups were used to validate the proposed strategy. First, an in silico validation was carried out on synthetic motion fields obtained from two realistic simulated ultrasound sequences. Then, 45 mid-ventricular 2D sequences of cine magnetic resonance imaging were processed to further evaluate the different approaches. The results showed that accurate boundary tracking combined with dense myocardial recovery via interpolation/ diffusion is a potentially viable solution to speed up dense myocardial motion field estimation and, consequently, to deform/compensate the myocardial wall throughout the cardiac cycle. Copyright © 2015 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized crosscorrelation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates di erent temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1:6 1:9% and 4:0 4:2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While fluoroscopy is still the most widely used imaging modality to guide cardiac interventions, the fusion of pre-operative Magnetic Resonance Imaging (MRI) with real-time intra-operative ultrasound (US) is rapidly gaining clinical acceptance as a viable, radiation-free alternative. In order to improve the detection of the left ventricular (LV) surface in 4D ultrasound, we propose to take advantage of the pre-operative MRI scans to extract a realistic geometrical model representing the patients cardiac anatomy. This could serve as prior information in the interventional setting, allowing to increase the accuracy of the anatomy extraction step in US data. We have made use of a real-time 3D segmentation framework used in the recent past to solve the LV segmentation problem in MR and US data independently and we take advantage of this common link to introduce the prior information as a soft penalty term in the ultrasound segmentation algorithm. We tested the proposed algorithm in a clinical dataset of 38 patients undergoing both MR and US scans. The introduction of the personalized shape prior improves the accuracy and robustness of the LV segmentation, as supported by the error reduction when compared to core lab manual segmentation of the same US sequences.