993 resultados para Organic produce
Resumo:
Dissertation presented to Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa for obtaining the master degree in Membrane Engineering
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Engenharia Sanitária
Resumo:
Dissertation toobtaina Master of Science degree in Bioorganics
Resumo:
Portuguese Science Foundation - project Electra PTDC/CTM/099124/2008 and the PhD grant SFRH/BD/45224. financial support: Professor E. Fortunato’s ERC 2008 Advanced Grant (INVISIBLE contract number 228144), “APPLE” FP7-NMP-2010-SME/262782-2 and “SMARTEC” FP7-ICT-2009.3.9/258203
Resumo:
The present work is devoted to study the pre-treatment of lignocellulosic biomass, especially wheat straw, by the application of the acidic ionic liquid (IL) such as 1-butyl-3-methylimidazolium hydrogen sulphate. The ability of this IL to hydrolysis and conversion of biomass was scrutinised. The pre-treatment with hydrogen sulphate-based IL allowed to obtain a liquor rich in hemicellulosic sugars, furans and organic acids, and a solid fraction mainly constituted by cellulose and lignin. Quantitative and qualitative analyses of the produced liquors were made by capillary electrophoresis and high-performance liquid chromatography. Pre-treatment conditions were set to produce xylose or furfural. Specific range of temperatures from 70 to 175 °C and residence times from 20.0 to 163.3 min were studied by fixing parameters such as biomass/IL ratio (10 % (w/w)) and water content (1.25 % (w/w)) in the pre-treatment process. Statistical modelling was applied to maximise the xylose and furfural concentrations. For the purpose of reaction condition comparison the severity factor for studied ionic liquid was proposed and applied in this work. Optimum conditions for xylose production were identified to be at 125 °C and 82.1 min, at which 16.7 % (w/w) xylose yield was attained. Furfural was preferably formed at higher pre-treatment temperatures and longer reaction time (161 °C and 104.5 min) reaching 30.7 % (w/w) maximum yield. The influence of water content on the optimum xylose formation was also studied. Pre-treatments with 5 and 10 % (w/w) water content were performed and an increase of 100 % and 140 % of xylose yield was observed, respectively, while the conversion into furfural maintained unchanged.
Resumo:
Deep-eutectic solvents (DES) are considered novel renewable and biodegradable solvents, with a cheap and easy synthesis, without waste production. Later it was discovered a new subclass of DES that even can be biocompatible, since their synthesis uses primary metabolites such as amino acids, organic acids and sugars, from organisms. This subclass was named natural deep-eutectic solvents (NADES). Due to their properties it was tried to study the interaction between these solvents and biopolymers, in order to produce functionalized fibers for biomedical applications. In this way, fibers were produced by using the electrospinning technique. However, it was first necessary to study some physical properties of NADES, as well as the influence of water in their properties. It has been concluded that the water has a high influence on NADES properties, which can be seen on the results obtained from the rheology and viscosity studies. The fluid dynamics had changed, as well as the viscosity. Afterwards, it was tested the viability of using a starch blend. First it was tested the dissolution of these biopolymers into NADES, in order to study the viability of their application in electrospinning. However the results obtained were not satisfactory, since the starch polymers studied did not presented any dissolution in any NADES, or even in organic solvents. In this way it was changed the approach, and it was used other biocompatible polymers. Poly(ethylene oxide), poly(vinyl alcohol) and gelatin were the others biopolymers tested for the electrospinning, with NADES. All polymers show good results, since it was possible to obtain fibers. However for gelatin it was used only eutectic mixtures, containing active pharmaceutical ingredients (API’s), instead of NADES. For this case it was used mandelic acid (antimicrobial properties), choline chloride, ibuprofen (anti-inflammatory properties) and menthol (analgesic properties). The polymers and the produced fibers were characterized by scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). With the help of these techniques it was possible to conclude that it was possible to encapsulate NADES within the fibers. Rheology it was also study for poly(ethylene oxide) and poly(vinyl alcohol), in a way to understand the influence of polymer concentration, on the electrospinning technique. For the gelatin, among the characterization techniques, it was also performed cytotoxicity and drug release studies. The gelatin membranes did not show any toxicity for the cells, since their viability was maintained. Regarding the controlled release profile experiment no conclusion could be drawn from the experiments, due to the rapid and complete dissolution of the gelatin in the buffer solution. However it was possible to quantify the mixture of choline chloride with mandelic acid, allowing thus to complete, and confirm, the information already obtained for the others characterization technique.
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.
Resumo:
Ion Mobility Spectrometry coupled with Multi Capillary Columns (MCC -IMS) is a fast analytical technique working at atmospheric pressure with high sensitivity and selectivity making it suitable for the analysis of complex biological matrices. MCC-IMS analysis generates its information through a 3D spectrum with peaks, corresponding to each of the substances detected, providing quantitative and qualitative information. Sometimes peaks of different substances overlap, making the quantification of substances present in the biological matrices a difficult process. In the present work we use peaks of isoprene and acetone as a model for this problem. These two volatile organic compounds (VOCs) that when detected by MCC-IMS produce two overlapping peaks. In this work it’s proposed an algorithm to identify and quantify these two peaks. This algorithm uses image processing techniques to treat the spectra and to detect the position of the peaks, and then fits the data to a custom model in order to separate the peaks. Once the peaks are separated it calculates the contribution of each peak to the data.
Resumo:
This study focus in the valorization of the apple pomace with the main goal of obtaining added value products. For that, hot compressed water technology was used for the extraction of phenolic compounds and hydrolysis of polysaccharides presents in the lignocellulosic structure of apple pomace to obtain simple sugars. The sugars have been utilized as alternative carbon source for growth, lipid accumulation and carotenoids production by five different yeast Yarrowia lipolytica, Rhodotorula mucilaginosa, Rhodotorula glutinis, Rhodosporidium babjevae and Rhodosporidium toruloides. Hydrolysis experiments were carried out with constant pressure of 100 bar, flow rate of 2mL/min and temperatures between 50°C and 250°C. The amount of total sugars present in apple pomace hydrolysates showed maximum values for the hydrolysis temperatures of 110°C and 190°C. In fact, these temperatures revealed the best results regarding the monosaccharides quantities. The amount of 5-HMF and furfural in each hydrolysate varied through the different temperatures. Maximum values for 5-HMF were obtained with 170°C, while furfural showed to be maximum at 210°C. Extraction of phenolic compounds were performed in simultaneously with hydrolysis reactions. Total phenolic compounds (TPC) increased along the temperature, however with small variations between 170°C and 250°C. Hydrolysates were then used as alternative carbon source to yeast growth. R. mucilaginosa shows the highest optical density, with the hydrolysate obtained at 130°C. Carotenoids produced by these yeast scored a total of 7.02μg carotenoids/g cell dry weight, while for the control assay, the same yeast scored 9.31μg caratonoides/g cell dry weight. β-carotene was quantified by HPLC, were 33% of the carotenoid production by R. mucilaginosa with hydrolysate as carbon source, corresponded to β-caroteno.
Resumo:
The purpose of the project was to create a marketing plan for the Portuguese brand O’Templus Gin, owned and managed by Oficina de Espíritos in Évora, Portugal. Here O’Templus gin is marketed as an artisanal, organic gin for organic consumers. Information collected to understand the market was consistent with previous research, however there continues to be a lack of information on the organic alcoholic drinks market in Portugal. Identifying the needs of the organic consumer in Portugal, and gauging interest in the product itself, a marketing plan was developed to bring O’Templus to a wider audience.
Resumo:
This paper aims to provide strategies for the organic supermarket chain “Alnatura” to shape the demand and its market share of the organic food & beverage (F&B) market in Germany within the next five years. Through the historic evolution and the current market assessment of Germany, compared to a benchmark country (US), as well as prospective trends in Germany, reasons and opportunities for market growth are evaluated. In addition, an industry attractiveness, competitor and company analysis is executed. Based on those findings and a conducted survey, suggestions to adjust Alnatura´s current business strategies are deduced and finally examined on its risk and feasibility.
Resumo:
White Color tuning is an attractive feature that Organic Light Emitting Diodes (OLEDs) offer. Up until now, there hasn’t been any report that mix both color tuning abilities with device stability. In this work, White OLEDs (W-OLEDs) based on a single RGB blend composed of a blue emitting N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) doped with a green emitting Coumarin-153 and a red emitting 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM1) dyes were produced. The final device structure was ITO/Blend/Bathocuproine (BCP)/ Tris(8-hydroxyquinolinato)aluminium (Alq3)/Al with an emission area of 0.25 cm2. The effects of the changing in DCM1’s concentration (from 0.5% to 1% wt.) allowed a tuning in the final white color resulting in devices capable of emitting a wide range of tunes – from cool to warm – while also keeping a low device complexity and a high stabilitty. Moreover, an explanation on the optoelectrical behavior of the device is presented. The best electroluminescense (EL) points toward 160 cd/m2 of brightness and 1.1 cd/A of efficiency, both prompted to being enhanced. An Impedance Spectroscopy (IS) analysis allowed to study both the effects of BCP as a Hole Blocking Layer and as an aging probe of the device. Finally, as a proof of concept, the emission was increased 9 and 64 times proving this structure can be effectively applied for general lighting.