871 resultados para Optimal design of experiments
Resumo:
Background Benznidazole is effective for treating acute and chronic (recently acquired) Tryponosoma cruzi infection (Chagas` disease). Recent data indicate that parasite persistence plays a pivotal role in the pathogenesis of chronic Chagas` cardiomyopathy. However, the efficacy of trypanocidal therapy in preventing clinical complications in patients with preexisting cardiac disease is unknown. Study Design BENEFIT is a multicenter, randomized, double-blind, placebo-controlled clinical trial of 3,000 patients with Chagas` cardiomyopathy in Latin America. Patients are randomized to receive benznidazole (5 mg/kg per day) or matched placebo, for 60 days. The primary outcome is the composite of death; resuscitated cardiac arrest; sustained ventricular tachycardia; insertion of pacemaker or cardiac defibrillator; cardiac transplantation; and development of new heart failure, stroke, or systemic or pulmonary thromboembolic events. The average follow-up time will be 5 years, and the trial has a 90% power to detect a 25% relative risk reduction. The BENEFIT program also comprises a substudy evaluating the effects of benznidazole on parasite clearance and an echo substudy exploring the impact of etiologic treatment on left ventricular function. Recruitment started in November 2004, and >1,000 patients have been enrolled in 35 centers from Argentina, Brazil, and Colombia to date. Conclusion This is the largest trial yet conducted in Chagas` disease. BENEFIT will clarify the role of trypanocidal therapy in preventing cardiac disease progression and death.
Resumo:
This article discusses the design of a comprehensive evaluation of a community development programme for young people 'at-risk' of self-harming behaviour. It outlines considerations in the design of the evaluation and focuses on the complexities and difficulties associated with the evaluation of a community development programme. The challenge was to fulfil the needs of the funding body for a broad, outcome-focused evaluation while remaining close enough to the programme to accurately represent its activities and potential effects at a community level. Specifically, the strengths and limitations of a mixed-method evaluation plan are discussed with recommendations for future evaluation practice.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.
Resumo:
Two hazard risk assessment matrices for the ranking of occupational health risks are described. The qualitative matrix uses qualitative measures of probability and consequence to determine risk assessment codes for hazard-disease combinations. A walk-through survey of an underground metalliferous mine and concentrator is used to demonstrate how the qualitative matrix can be applied to determine priorities for the control of occupational health hazards. The semi-quantitative matrix uses attributable risk as a quantitative measure of probability and uses qualitative measures of consequence. A practical application of this matrix is the determination of occupational health priorities using existing epidemiological studies. Calculated attributable risks from epidemiological studies of hazard-disease combinations in mining and minerals processing are used as examples. These historic response data do not reflect the risks associated with current exposures. A method using current exposure data, known exposure-response relationships and the semi-quantitative matrix is proposed for more accurate and current risk rankings.
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Radio-frequency (RF) coils are a necessary component of magnetic resonance imaging (MRI) systems. When used in transmit operation, they act to generate a homogeneous RF magnetic field within a volume of interest and when in receive operation, they act to receive the nuclear magnetic resonance signal from the RF-excited specimen. This paper outlines a procedure for the design of open RF coils using the time-harmonic inverse method. This method entails the calculation of an ideal current density on a multipaned planar surface that would generate a specified magnetic field within the volume of interest. Because of the averaging effect of the regularization technique in the matrix solution, the specified magnetic field is shaped within an iterative procedure until the generated magnetic field matches the desired magnetic field. The stream-function technique is used to ascertain conductor positions and a method of moments package is then used to finalize the design. An open head/neck coil was designed to operate in a clinical 2T MRI system and the presented results prove the efficacy of this design methodology.
Resumo:
Design of liquid retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgment, code of practice and previous experience. Various design parameters to be chosen include configuration, material, loading, etc. A novice engineer may face many difficulties in the design process. Recent developments in artificial intelligence and emerging field of knowledge-based system (KBS) have made widespread applications in different fields. However, no attempt has been made to apply this intelligent system to the design of liquid retaining structures. The objective of this study is, thus, to develop a KBS that has the ability to assist engineers in the preliminary design of liquid retaining structures. Moreover, it can provide expert advice to the user in selection of design criteria, design parameters and optimum configuration based on minimum cost. The development of a prototype KBS for the design of liquid retaining structures (LIQUID), using blackboard architecture with hybrid knowledge representation techniques including production rule system and object-oriented approach, is presented in this paper. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Cases of high-sided vehicles striking low bridges is a large problem in many countries, especially the UK. This paper describes an experiment to evaluate a new design of markings for low bridges. A full size bridge was constructed which was capable of having its overhead clearance adjusted. Subjects sat in a truck cab as. it drove towards the bridge and were asked to judge whether the vehicle could pass safely under the bridge. The main objective of the research, was to determine whether marking the bridge with a newly devised experimental marking would result in more cautious decisions from subjects regarding whether or not the experimental bridge structure could be passed under safely compared with the currently used UK bridge marking standard. The results show that the type of bridge marking influenced the level of caution associated with decisions regarding bridge navigation, with the new marking design producing the most cautious decisions for the two different bridge heights used, at all distances away from the bridge structure. Additionally, the distance before the bridge at which decisions were given had an effect on the level of caution associated with decisions regarding bridge navigation (the closer to the bridge, the more cautious the decisions became, irrespective of the marking design). The implications of these results for reducing the number of bridge strikes are discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigate the design of free-space optical interconnects (FSOIs) based on arrays of vertical-cavity surface-emitting lasers (VCSELs), microlenses, and photodetectors. We explain the effect of the modal structure of a multimodeVCSEL beam on the performance of a FSOI with microchannel architecture. A Gaussian-beam diffraction model is used in combination with the experimentally obtained spectrally resolved VCSEL beam profiles to determine the optical channel crosstalk and the signal-to-noise ratio (SNR) in the system. The dependence of the SNR on the feature parameters of a FSOI is investigated. We found that the presence of higher-order modes reduces the SNR and the maximum feasible interconnect distance. We also found that the positioning of a VCSEL array relative to the transmitter microlens has a significant impact on the SNR and the maximum feasible interconnect distance. Our analysis shows that the departure from the traditional confocal system yields several advantages including the extended interconnect distance and/or improved SNR. The results show that FSOIs based on multimode VCSELs can be efficiently utilized in both chip-level and board-level interconnects. (C) 2002 Optical Society of America.
Resumo:
The emphasis of this work is on the optimal design of MRI magnets with both superconducting coils and ferromagnetic rings. The work is directed to the automated design of MRI magnet systems containing superconducting wire and both `cold' and `warm' iron. Details of the optimization procedure are given and the results show combined superconducting and iron material MRI magnets with excellent field characteristics. Strong, homogeneous central magnetic fields are produced with little stray or external field leakage. The field calculations are performed using a semi-analytical method for both current coil and iron material sources. Design examples for symmetric, open and asymmetric clinical MRI magnets containing both superconducting coils and ferromagnetic material are presented.