942 resultados para Optical recording materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and analysis of an optical read-out scheme based on a grated waveguide (GWG) resonator for interrogating microcantilever sensor arrays is presented. The optical system consisting of a micro cantilever monolithically integrated in proximity to a grated waveguide (GWG), is realized in silicon optical bench platform. The mathematical analysis of the optical system is performed using a Fabry-Perot interferometer model with a lossy cavity formed between the cantilever and the GWG and an analytical expression is derived for the optical power transmission as a function of the cantilever deflection which corresponds to cavity width variation. The intensity transmission of the optical system for different cantilever deflections estimated using the analytical expression captures the essential features exhibited by a FDTD numerical model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contemporary world optoelectronics materials are used in daily life owing to its verity of applications. Utility of these materials makes them attractive for investigations. Specifically study regarding optical properties of recent developed materials is worth for technical uses. Therefore, this work demonstrates a comparative study of extinction coefficient (K), real dielectric (epsilon') and imaginary dielectric (epsilon `') constants, refractive index (n) and optical energy band gap (E-g) with structural unit < r > for Se98-xZn2Inx (0 <= X-In <= 10) and Se93-yZn2Te5Iny (0 <= Y-In <= 10) chalcogenide glasses. Fixed amount of Te with increasing In concentration as cost of Se is largely influence the optical parameters of the materials. Values of optical parameters are obtained higher and lower respectively at thresholds structural units values. This comparative study demonstrates that enhanced values of optical parameters have been obtained for Te containing Se-Zn-In glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Unusual optical bandgap narrowing is observed in undoped SnO2 nanoparticles synthesized by the solution combustion method. The estimated crystallite size is nearly 7 nm. Though the quantum confinement effect predicts a larger optical bandgap for materials with small crystallite size than the bulk, the optical bandgap in the as synthesized materials is found to be 2.9 eV compared to the reported value of 3.6 eV for bulk SnO2 particles. The yellow-green photoluminescence emissions and the observed narrowing of the bandgap can be attributed to the deep donor levels of oxygen vacancies, owing to the high exothermicity of the combustion reaction and the faster cooling rates involved in the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fine powders comprising nanocrystallites of barium sodium niobate, Ba2NaNb5O15 (BNN) were obtained via a citrate assisted sol-gel route at a much lower temperature than that of the conventional solid-state reaction route. The phase evolution of BNN as a function of temperature was investigated by thermogravimetric analysis (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). DTA data followed by XRD studies confirmed the BNN formation temperature to be around 923 K. The as-synthesized powders heat-treated at 923 K/10 h attained an orthorhombic structure akin to that of the parent BNN phase. Transmission electron microscopy revealed that the nanocrystallites are associated with dislocations. The optical band gap was calculated using the Kubelka-Munk function. These nanocrystallites exhibited strong visible photoluminescence (PL) at room temperature. The PL mechanism was explained by invoking the dielectric confinement effect, defect states and generation of self-trapped excitons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A brief overview of our group research activities is given and the concept of donor acceptor is described for the development of conjugated polymers for optoelectronic devices. In particular, a new family of conjugated polymers based on dithienopyrrole has been synthesized to demonstrate the concept of donor-acceptor. The dithienopyrrole was coupled to benzodithiophene via Stille coupling to obtain two low band gap polymers P5a and P5b having -C18H37 and -2-ethylhexyl alkyl chain respectively. Both the polymers exhibit absorption within the solar spectrum with an optical band gap below 2 eV. Atomic force microscopy revealed that both the polymers form smooth film with roughness of 2.4 nm and photoluminescence measurement of polymer/fullerene derivative blend film suggests effective dissociation of exciton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Borocarbonitrides (BxCyNz) with a graphene-like structure exhibit a remarkable high lithium cyclability and current rate capability. The electrochemical performance of the BxCyNz materials, synthesized by using a simple solid-state synthesis route based on urea, was strongly dependent on the composition and surface area. Among the three compositions studied, the carbon-rich compound B0.15C0.73N0.12 with the highest surface area showed an exceptional stability (over 100cycles) and rate capability over widely varying current density values (0.05-1Ag(-1)). B0.15C0.73N0.12 has a very high specific capacity of 710mAhg(-1) at 0.05Ag(-1). With the inclusion of a suitable additive in the electrolyte, the specific capacity improved drastically, recording an impressive value of nearly 900mAhg(-1) at 0.05Ag(-1). It is believed that the solid-electrolyte interphase (SEI) layer at the interface of BxCyNz and electrolyte also plays a crucial role in the performance of the BxCyNz .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films of CexZn1-xO thin films were deposited on glass substrates at 400 degrees C by nebulizer spray pyrolysis technique. Ce doping concentration (x) was varied from 0 to 10%, in steps of 2.5%. X-ray diffraction reveals that all the films have polycrystalline nature with hexagonal crystal structure and high preferential orientation along (002) plane. Optical parameters such as; transmittance, band gap energy, refractive index (n), extinction coefficient (k), complex dielectric constants (epsilon(r), epsilon(i)) and optical conductivity (sigma(r), sigma(i)) have been determined and discussed with respect to Ce concentration. All the films exhibit transmittance above 80% in the wavelength range from 330 to 2500 nm. Optical transmission measurements indicate the decrease of direct band gap energy from 3.26 to 3.12 eV with the increase of Ce concentration. Photoluminescence spectra show strong near band edge emission centered similar to 398 nm and green emission centered similar to 528 nm with excitation wavelength similar to 350 nm. High resolution scanning electron micrographs indicate the formation of vertical nano-rod like structures on the film surface with average diameter similar to 41 nm. Electrical properties of the Ce doped ZnO film have been studied using ac impedance spectroscopy in the frequency range from 100 Hz-1 MHz at different temperatures. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx(2)) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx(2) films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of approximate to 185cm(2)/C. The electrochemical properties of PProDOT-Hx(2) films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx(2) thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnS quantum dots (QDs) of different sizes are synthesized by a simple chemical co-precipitation method at room temperature, by varying pH value of the reaction mixture. Samples are characterized by an X-ray diffractometer, transmission electron microscope, energy-dispersive X-ray analysis, etc. Linear optical properties, including UV-visible absorption and photoluminescence emission characteristics, of as-prepared QDs are measured. Size dependent nonlinear optical property, such as second harmonic generation (SHG) of 1064 nm Nd:YAG laser fundamental radiation in the synthesized ZnS QDs, is reported for the first time, to the best of our knowledge, by using the standard Kurtz-Perry powder method. In not to study the possibility of the synthesized ZnS QDs in different device applications ZnS/PMMA (polymethylmethacrylate) nanocomposites are also synthesized. The presence of weak chemical interaction between the polymer matrix and ZnS QDs is confirmed by Fourier transform infrared spectroscopy. Thermal properties of the nanocomposites are studied by differential scanning calorimetry and thermo-gravimetric analysis techniques, which show that the composites are stable up to similar to 300 degrees C temperature. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcogenide glasses are interesting materials for their infrared transmitting properties and photo-induced effects. This paper reports the influence of light on the optical properties of Sb10S40Se50 thin films. The amorphous nature and chemical composition of the deposited film was studied by X-ray diffraction and energy dispersive X-ray analysis (EDAX). The optical constants, i.e., refractive index, extinction coefficient, and optical band gap as well as film thickness are determined from the measured transmission spectra using the Swanepoel method. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. The dispersion energy parameter was found to be less for the laser-irradiated film, which indicates the laser-irradiated film is more microstructurally disordered as compared to the as-prepared film. It is observed that laser-irradiation of the films leads to decrease in optical band gap (photo-darkening) while increase in refractive index. The decrease in the optical band gap is explained on the basis of change in nature of films due to chemical disorderness and the increase in refractive index may be due to the densification of films with improved grain structure because of microstructural disorderness in the films. The optical changes are supported by X-ray photoelectron spectroscopy data. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel, rapid, and low-temperature method for the synthesis of undoped and Eu-doped GdOOH spherical hierarchical structures, without using any structure-directing agents, through the microwave irradiation route. The as-prepared product consists of nearly monodisperse microspheres measuring about 1.3 mu m in diameter. Electron microscopy reveals that each microsphere is an assembly of two-dimensional nanoflakes (about 30 nm thin) which, in turn, result from the assembly of crystallites measuring about 9 nm in diameter. Thus, a three-level hierarchy can be seen in the formation of the GdOOH microspheres: from nanoparticles to 2D nanoflakes to 3D spherical structures. When doped with Eu3+ ions, the GdOOH microspheres show a strong red emission, making them promising candidates as phosphors. Finally, thermal conversion at modest temperatures leads to the formation of corresponding oxide structures with enhanced luminescence, while retaining the spherical morphology of their oxyhydroxide precursor.