848 resultados para Online data processing.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports on an innovative approach that aims to reduce information management costs in data-intensive and cognitively-complex biomedical environments. Recognizing the importance of prominent high-performance computing paradigms and large data processing technologies as well as collaboration support systems to remedy data-intensive issues, it adopts a hybrid approach by building on the synergy of these technologies. The proposed approach provides innovative Web-based workbenches that integrate and orchestrate a set of interoperable services that reduce the data-intensiveness and complexity overload at critical decision points to a manageable level, thus permitting stakeholders to be more productive and concentrate on creative activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A basic requirement of the data acquisition systems used in long pulse fusion experiments is the real time physical events detection in signals. Developing such applications is usually a complex task, so it is necessary to develop a set of hardware and software tools that simplify their implementation. This type of applications can be implemented in ITER using fast controllers. ITER is standardizing the architectures to be used for fast controller implementation. Until now the standards chosen are PXIe architectures (based on PCIe) for the hardware and EPICS middleware for the software. This work presents the methodology for implementing data acquisition and pre-processing using FPGA-based DAQ cards and how to integrate these in fast controllers using EPICS.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La optimización de parámetros tales como el consumo de potencia, la cantidad de recursos lógicos empleados o la ocupación de memoria ha sido siempre una de las preocupaciones principales a la hora de diseñar sistemas embebidos. Esto es debido a que se trata de sistemas dotados de una cantidad de recursos limitados, y que han sido tradicionalmente empleados para un propósito específico, que permanece invariable a lo largo de toda la vida útil del sistema. Sin embargo, el uso de sistemas embebidos se ha extendido a áreas de aplicación fuera de su ámbito tradicional, caracterizadas por una mayor demanda computacional. Así, por ejemplo, algunos de estos sistemas deben llevar a cabo un intenso procesado de señales multimedia o la transmisión de datos mediante sistemas de comunicaciones de alta capacidad. Por otra parte, las condiciones de operación del sistema pueden variar en tiempo real. Esto sucede, por ejemplo, si su funcionamiento depende de datos medidos por el propio sistema o recibidos a través de la red, de las demandas del usuario en cada momento, o de condiciones internas del propio dispositivo, tales como la duración de la batería. Como consecuencia de la existencia de requisitos de operación dinámicos es necesario ir hacia una gestión dinámica de los recursos del sistema. Si bien el software es inherentemente flexible, no ofrece una potencia computacional tan alta como el hardware. Por lo tanto, el hardware reconfigurable aparece como una solución adecuada para tratar con mayor flexibilidad los requisitos variables dinámicamente en sistemas con alta demanda computacional. La flexibilidad y adaptabilidad del hardware requieren de dispositivos reconfigurables que permitan la modificación de su funcionalidad bajo demanda. En esta tesis se han seleccionado las FPGAs (Field Programmable Gate Arrays) como los dispositivos más apropiados, hoy en día, para implementar sistemas basados en hardware reconfigurable De entre todas las posibilidades existentes para explotar la capacidad de reconfiguración de las FPGAs comerciales, se ha seleccionado la reconfiguración dinámica y parcial. Esta técnica consiste en substituir una parte de la lógica del dispositivo, mientras el resto continúa en funcionamiento. La capacidad de reconfiguración dinámica y parcial de las FPGAs es empleada en esta tesis para tratar con los requisitos de flexibilidad y de capacidad computacional que demandan los dispositivos embebidos. La propuesta principal de esta tesis doctoral es el uso de arquitecturas de procesamiento escalables espacialmente, que son capaces de adaptar su funcionalidad y rendimiento en tiempo real, estableciendo un compromiso entre dichos parámetros y la cantidad de lógica que ocupan en el dispositivo. A esto nos referimos con arquitecturas con huellas escalables. En particular, se propone el uso de arquitecturas altamente paralelas, modulares, regulares y con una alta localidad en sus comunicaciones, para este propósito. El tamaño de dichas arquitecturas puede ser modificado mediante la adición o eliminación de algunos de los módulos que las componen, tanto en una dimensión como en dos. Esta estrategia permite implementar soluciones escalables, sin tener que contar con una versión de las mismas para cada uno de los tamaños posibles de la arquitectura. De esta manera se reduce significativamente el tiempo necesario para modificar su tamaño, así como la cantidad de memoria necesaria para almacenar todos los archivos de configuración. En lugar de proponer arquitecturas para aplicaciones específicas, se ha optado por patrones de procesamiento genéricos, que pueden ser ajustados para solucionar distintos problemas en el estado del arte. A este respecto, se proponen patrones basados en esquemas sistólicos, así como de tipo wavefront. Con el objeto de poder ofrecer una solución integral, se han tratado otros aspectos relacionados con el diseño y el funcionamiento de las arquitecturas, tales como el control del proceso de reconfiguración de la FPGA, la integración de las arquitecturas en el resto del sistema, así como las técnicas necesarias para su implementación. Por lo que respecta a la implementación, se han tratado distintos aspectos de bajo nivel dependientes del dispositivo. Algunas de las propuestas realizadas a este respecto en la presente tesis doctoral son un router que es capaz de garantizar el correcto rutado de los módulos reconfigurables dentro del área destinada para ellos, así como una estrategia para la comunicación entre módulos que no introduce ningún retardo ni necesita emplear recursos configurables del dispositivo. El flujo de diseño propuesto se ha automatizado mediante una herramienta denominada DREAMS. La herramienta se encarga de la modificación de las netlists correspondientes a cada uno de los módulos reconfigurables del sistema, y que han sido generadas previamente mediante herramientas comerciales. Por lo tanto, el flujo propuesto se entiende como una etapa de post-procesamiento, que adapta esas netlists a los requisitos de la reconfiguración dinámica y parcial. Dicha modificación la lleva a cabo la herramienta de una forma completamente automática, por lo que la productividad del proceso de diseño aumenta de forma evidente. Para facilitar dicho proceso, se ha dotado a la herramienta de una interfaz gráfica. El flujo de diseño propuesto, y la herramienta que lo soporta, tienen características específicas para abordar el diseño de las arquitecturas dinámicamente escalables propuestas en esta tesis. Entre ellas está el soporte para el realojamiento de módulos reconfigurables en posiciones del dispositivo distintas a donde el módulo es originalmente implementado, así como la generación de estructuras de comunicación compatibles con la simetría de la arquitectura. El router has sido empleado también en esta tesis para obtener un rutado simétrico entre nets equivalentes. Dicha posibilidad ha sido explotada para aumentar la protección de circuitos con altos requisitos de seguridad, frente a ataques de canal lateral, mediante la implantación de lógica complementaria con rutado idéntico. Para controlar el proceso de reconfiguración de la FPGA, se propone en esta tesis un motor de reconfiguración especialmente adaptado a los requisitos de las arquitecturas dinámicamente escalables. Además de controlar el puerto de reconfiguración, el motor de reconfiguración ha sido dotado de la capacidad de realojar módulos reconfigurables en posiciones arbitrarias del dispositivo, en tiempo real. De esta forma, basta con generar un único bitstream por cada módulo reconfigurable del sistema, independientemente de la posición donde va a ser finalmente reconfigurado. La estrategia seguida para implementar el proceso de realojamiento de módulos es diferente de las propuestas existentes en el estado del arte, pues consiste en la composición de los archivos de configuración en tiempo real. De esta forma se consigue aumentar la velocidad del proceso, mientras que se reduce la longitud de los archivos de configuración parciales a almacenar en el sistema. El motor de reconfiguración soporta módulos reconfigurables con una altura menor que la altura de una región de reloj del dispositivo. Internamente, el motor se encarga de la combinación de los frames que describen el nuevo módulo, con la configuración existente en el dispositivo previamente. El escalado de las arquitecturas de procesamiento propuestas en esta tesis también se puede beneficiar de este mecanismo. Se ha incorporado también un acceso directo a una memoria externa donde se pueden almacenar bitstreams parciales. Para acelerar el proceso de reconfiguración se ha hecho funcionar el ICAP por encima de la máxima frecuencia de reloj aconsejada por el fabricante. Así, en el caso de Virtex-5, aunque la máxima frecuencia del reloj deberían ser 100 MHz, se ha conseguido hacer funcionar el puerto de reconfiguración a frecuencias de operación de hasta 250 MHz, incluyendo el proceso de realojamiento en tiempo real. Se ha previsto la posibilidad de portar el motor de reconfiguración a futuras familias de FPGAs. Por otro lado, el motor de reconfiguración se puede emplear para inyectar fallos en el propio dispositivo hardware, y así ser capaces de evaluar la tolerancia ante los mismos que ofrecen las arquitecturas reconfigurables. Los fallos son emulados mediante la generación de archivos de configuración a los que intencionadamente se les ha introducido un error, de forma que se modifica su funcionalidad. Con el objetivo de comprobar la validez y los beneficios de las arquitecturas propuestas en esta tesis, se han seguido dos líneas principales de aplicación. En primer lugar, se propone su uso como parte de una plataforma adaptativa basada en hardware evolutivo, con capacidad de escalabilidad, adaptabilidad y recuperación ante fallos. En segundo lugar, se ha desarrollado un deblocking filter escalable, adaptado a la codificación de vídeo escalable, como ejemplo de aplicación de las arquitecturas de tipo wavefront propuestas. El hardware evolutivo consiste en el uso de algoritmos evolutivos para diseñar hardware de forma autónoma, explotando la flexibilidad que ofrecen los dispositivos reconfigurables. En este caso, los elementos de procesamiento que componen la arquitectura son seleccionados de una biblioteca de elementos presintetizados, de acuerdo con las decisiones tomadas por el algoritmo evolutivo, en lugar de definir la configuración de las mismas en tiempo de diseño. De esta manera, la configuración del core puede cambiar cuando lo hacen las condiciones del entorno, en tiempo real, por lo que se consigue un control autónomo del proceso de reconfiguración dinámico. Así, el sistema es capaz de optimizar, de forma autónoma, su propia configuración. El hardware evolutivo tiene una capacidad inherente de auto-reparación. Se ha probado que las arquitecturas evolutivas propuestas en esta tesis son tolerantes ante fallos, tanto transitorios, como permanentes y acumulativos. La plataforma evolutiva se ha empleado para implementar filtros de eliminación de ruido. La escalabilidad también ha sido aprovechada en esta aplicación. Las arquitecturas evolutivas escalables permiten la adaptación autónoma de los cores de procesamiento ante fluctuaciones en la cantidad de recursos disponibles en el sistema. Por lo tanto, constituyen un ejemplo de escalabilidad dinámica para conseguir un determinado nivel de calidad, que puede variar en tiempo real. Se han propuesto dos variantes de sistemas escalables evolutivos. El primero consiste en un único core de procesamiento evolutivo, mientras que el segundo está formado por un número variable de arrays de procesamiento. La codificación de vídeo escalable, a diferencia de los codecs no escalables, permite la decodificación de secuencias de vídeo con diferentes niveles de calidad, de resolución temporal o de resolución espacial, descartando la información no deseada. Existen distintos algoritmos que soportan esta característica. En particular, se va a emplear el estándar Scalable Video Coding (SVC), que ha sido propuesto como una extensión de H.264/AVC, ya que este último es ampliamente utilizado tanto en la industria, como a nivel de investigación. Para poder explotar toda la flexibilidad que ofrece el estándar, hay que permitir la adaptación de las características del decodificador en tiempo real. El uso de las arquitecturas dinámicamente escalables es propuesto en esta tesis con este objetivo. El deblocking filter es un algoritmo que tiene como objetivo la mejora de la percepción visual de la imagen reconstruida, mediante el suavizado de los "artefactos" de bloque generados en el lazo del codificador. Se trata de una de las tareas más intensivas en procesamiento de datos de H.264/AVC y de SVC, y además, su carga computacional es altamente dependiente del nivel de escalabilidad seleccionado en el decodificador. Por lo tanto, el deblocking filter ha sido seleccionado como prueba de concepto de la aplicación de las arquitecturas dinámicamente escalables para la compresión de video. La arquitectura propuesta permite añadir o eliminar unidades de computación, siguiendo un esquema de tipo wavefront. La arquitectura ha sido propuesta conjuntamente con un esquema de procesamiento en paralelo del deblocking filter a nivel de macrobloque, de tal forma que cuando se varía del tamaño de la arquitectura, el orden de filtrado de los macrobloques varia de la misma manera. El patrón propuesto se basa en la división del procesamiento de cada macrobloque en dos etapas independientes, que se corresponden con el filtrado horizontal y vertical de los bloques dentro del macrobloque. Las principales contribuciones originales de esta tesis son las siguientes: - El uso de arquitecturas altamente regulares, modulares, paralelas y con una intensa localidad en sus comunicaciones, para implementar cores de procesamiento dinámicamente reconfigurables. - El uso de arquitecturas bidimensionales, en forma de malla, para construir arquitecturas dinámicamente escalables, con una huella escalable. De esta forma, las arquitecturas permiten establecer un compromiso entre el área que ocupan en el dispositivo, y las prestaciones que ofrecen en cada momento. Se proponen plantillas de procesamiento genéricas, de tipo sistólico o wavefront, que pueden ser adaptadas a distintos problemas de procesamiento. - Un flujo de diseño y una herramienta que lo soporta, para el diseño de sistemas reconfigurables dinámicamente, centradas en el diseño de las arquitecturas altamente paralelas, modulares y regulares propuestas en esta tesis. - Un esquema de comunicaciones entre módulos reconfigurables que no introduce ningún retardo ni requiere el uso de recursos lógicos propios. - Un router flexible, capaz de resolver los conflictos de rutado asociados con el diseño de sistemas reconfigurables dinámicamente. - Un algoritmo de optimización para sistemas formados por múltiples cores escalables que optimice, mediante un algoritmo genético, los parámetros de dicho sistema. Se basa en un modelo conocido como el problema de la mochila. - Un motor de reconfiguración adaptado a los requisitos de las arquitecturas altamente regulares y modulares. Combina una alta velocidad de reconfiguración, con la capacidad de realojar módulos en tiempo real, incluyendo el soporte para la reconfiguración de regiones que ocupan menos que una región de reloj, así como la réplica de un módulo reconfigurable en múltiples posiciones del dispositivo. - Un mecanismo de inyección de fallos que, empleando el motor de reconfiguración del sistema, permite evaluar los efectos de fallos permanentes y transitorios en arquitecturas reconfigurables. - La demostración de las posibilidades de las arquitecturas propuestas en esta tesis para la implementación de sistemas de hardware evolutivos, con una alta capacidad de procesamiento de datos. - La implementación de sistemas de hardware evolutivo escalables, que son capaces de tratar con la fluctuación de la cantidad de recursos disponibles en el sistema, de una forma autónoma. - Una estrategia de procesamiento en paralelo para el deblocking filter compatible con los estándares H.264/AVC y SVC que reduce el número de ciclos de macrobloque necesarios para procesar un frame de video. - Una arquitectura dinámicamente escalable que permite la implementación de un nuevo deblocking filter, totalmente compatible con los estándares H.264/AVC y SVC, que explota el paralelismo a nivel de macrobloque. El presente documento se organiza en siete capítulos. En el primero se ofrece una introducción al marco tecnológico de esta tesis, especialmente centrado en la reconfiguración dinámica y parcial de FPGAs. También se motiva la necesidad de las arquitecturas dinámicamente escalables propuestas en esta tesis. En el capítulo 2 se describen las arquitecturas dinámicamente escalables. Dicha descripción incluye la mayor parte de las aportaciones a nivel arquitectural realizadas en esta tesis. Por su parte, el flujo de diseño adaptado a dichas arquitecturas se propone en el capítulo 3. El motor de reconfiguración se propone en el 4, mientras que el uso de dichas arquitecturas para implementar sistemas de hardware evolutivo se aborda en el 5. El deblocking filter escalable se describe en el 6, mientras que las conclusiones finales de esta tesis, así como la descripción del trabajo futuro, son abordadas en el capítulo 7. ABSTRACT The optimization of system parameters, such as power dissipation, the amount of hardware resources and the memory footprint, has been always a main concern when dealing with the design of resource-constrained embedded systems. This situation is even more demanding nowadays. Embedded systems cannot anymore be considered only as specific-purpose computers, designed for a particular functionality that remains unchanged during their lifetime. Differently, embedded systems are now required to deal with more demanding and complex functions, such as multimedia data processing and high-throughput connectivity. In addition, system operation may depend on external data, the user requirements or internal variables of the system, such as the battery life-time. All these conditions may vary at run-time, leading to adaptive scenarios. As a consequence of both the growing computational complexity and the existence of dynamic requirements, dynamic resource management techniques for embedded systems are needed. Software is inherently flexible, but it cannot meet the computing power offered by hardware solutions. Therefore, reconfigurable hardware emerges as a suitable technology to deal with the run-time variable requirements of complex embedded systems. Adaptive hardware requires the use of reconfigurable devices, where its functionality can be modified on demand. In this thesis, Field Programmable Gate Arrays (FPGAs) have been selected as the most appropriate commercial technology existing nowadays to implement adaptive hardware systems. There are different ways of exploiting reconfigurability in reconfigurable devices. Among them is dynamic and partial reconfiguration. This is a technique which consists in substituting part of the FPGA logic on demand, while the rest of the device continues working. The strategy followed in this thesis is to exploit the dynamic and partial reconfiguration of commercial FPGAs to deal with the flexibility and complexity demands of state-of-the-art embedded systems. The proposal of this thesis to deal with run-time variable system conditions is the use of spatially scalable processing hardware IP cores, which are able to adapt their functionality or performance at run-time, trading them off with the amount of logic resources they occupy in the device. This is referred to as a scalable footprint in the context of this thesis. The distinguishing characteristic of the proposed cores is that they rely on highly parallel, modular and regular architectures, arranged in one or two dimensions. These architectures can be scaled by means of the addition or removal of the composing blocks. This strategy avoids implementing a full version of the core for each possible size, with the corresponding benefits in terms of scaling and adaptation time, as well as bitstream storage memory requirements. Instead of providing specific-purpose architectures, generic architectural templates, which can be tuned to solve different problems, are proposed in this thesis. Architectures following both systolic and wavefront templates have been selected. Together with the proposed scalable architectural templates, other issues needed to ensure the proper design and operation of the scalable cores, such as the device reconfiguration control, the run-time management of the architecture and the implementation techniques have been also addressed in this thesis. With regard to the implementation of dynamically reconfigurable architectures, device dependent low-level details are addressed. Some of the aspects covered in this thesis are the area constrained routing for reconfigurable modules, or an inter-module communication strategy which does not introduce either extra delay or logic overhead. The system implementation, from the hardware description to the device configuration bitstream, has been fully automated by modifying the netlists corresponding to each of the system modules, which are previously generated using the vendor tools. This modification is therefore envisaged as a post-processing step. Based on these implementation proposals, a design tool called DREAMS (Dynamically Reconfigurable Embedded and Modular Systems) has been created, including a graphic user interface. The tool has specific features to cope with modular and regular architectures, including the support for module relocation and the inter-module communications scheme based on the symmetry of the architecture. The core of the tool is a custom router, which has been also exploited in this thesis to obtain symmetric routed nets, with the aim of enhancing the protection of critical reconfigurable circuits against side channel attacks. This is achieved by duplicating the logic with an exactly equal routing. In order to control the reconfiguration process of the FPGA, a Reconfiguration Engine suited to the specific requirements set by the proposed architectures was also proposed. Therefore, in addition to controlling the reconfiguration port, the Reconfiguration Engine has been enhanced with the online relocation ability, which allows employing a unique configuration bitstream for all the positions where the module may be placed in the device. Differently to the existing relocating solutions, which are based on bitstream parsers, the proposed approach is based on the online composition of bitstreams. This strategy allows increasing the speed of the process, while the length of partial bitstreams is also reduced. The height of the reconfigurable modules can be lower than the height of a clock region. The Reconfiguration Engine manages the merging process of the new and the existing configuration frames within each clock region. The process of scaling up and down the hardware cores also benefits from this technique. A direct link to an external memory where partial bitstreams can be stored has been also implemented. In order to accelerate the reconfiguration process, the ICAP has been overclocked over the speed reported by the manufacturer. In the case of Virtex-5, even though the maximum frequency of the ICAP is reported to be 100 MHz, valid operations at 250 MHz have been achieved, including the online relocation process. Portability of the reconfiguration solution to today's and probably, future FPGAs, has been also considered. The reconfiguration engine can be also used to inject faults in real hardware devices, and this way being able to evaluate the fault tolerance offered by the reconfigurable architectures. Faults are emulated by introducing partial bitstreams intentionally modified to provide erroneous functionality. To prove the validity and the benefits offered by the proposed architectures, two demonstration application lines have been envisaged. First, scalable architectures have been employed to develop an evolvable hardware platform with adaptability, fault tolerance and scalability properties. Second, they have been used to implement a scalable deblocking filter suited to scalable video coding. Evolvable Hardware is the use of evolutionary algorithms to design hardware in an autonomous way, exploiting the flexibility offered by reconfigurable devices. In this case, processing elements composing the architecture are selected from a presynthesized library of processing elements, according to the decisions taken by the algorithm, instead of being decided at design time. This way, the configuration of the array may change as run-time environmental conditions do, achieving autonomous control of the dynamic reconfiguration process. Thus, the self-optimization property is added to the native self-configurability of the dynamically scalable architectures. In addition, evolvable hardware adaptability inherently offers self-healing features. The proposal has proved to be self-tolerant, since it is able to self-recover from both transient and cumulative permanent faults. The proposed evolvable architecture has been used to implement noise removal image filters. Scalability has been also exploited in this application. Scalable evolvable hardware architectures allow the autonomous adaptation of the processing cores to a fluctuating amount of resources available in the system. Thus, it constitutes an example of the dynamic quality scalability tackled in this thesis. Two variants have been proposed. The first one consists in a single dynamically scalable evolvable core, and the second one contains a variable number of processing cores. Scalable video is a flexible approach for video compression, which offers scalability at different levels. Differently to non-scalable codecs, a scalable video bitstream can be decoded with different levels of quality, spatial or temporal resolutions, by discarding the undesired information. The interest in this technology has been fostered by the development of the Scalable Video Coding (SVC) standard, as an extension of H.264/AVC. In order to exploit all the flexibility offered by the standard, it is necessary to adapt the characteristics of the decoder to the requirements of each client during run-time. The use of dynamically scalable architectures is proposed in this thesis with this aim. The deblocking filter algorithm is the responsible of improving the visual perception of a reconstructed image, by smoothing blocking artifacts generated in the encoding loop. This is one of the most computationally intensive tasks of the standard, and furthermore, it is highly dependent on the selected scalability level in the decoder. Therefore, the deblocking filter has been selected as a proof of concept of the implementation of dynamically scalable architectures for video compression. The proposed architecture allows the run-time addition or removal of computational units working in parallel to change its level of parallelism, following a wavefront computational pattern. Scalable architecture is offered together with a scalable parallelization strategy at the macroblock level, such that when the size of the architecture changes, the macroblock filtering order is modified accordingly. The proposed pattern is based on the division of the macroblock processing into two independent stages, corresponding to the horizontal and vertical filtering of the blocks within the macroblock. The main contributions of this thesis are: - The use of highly parallel, modular, regular and local architectures to implement dynamically reconfigurable processing IP cores, for data intensive applications with flexibility requirements. - The use of two-dimensional mesh-type arrays as architectural templates to build dynamically reconfigurable IP cores, with a scalable footprint. The proposal consists in generic architectural templates, which can be tuned to solve different computational problems. •A design flow and a tool targeting the design of DPR systems, focused on highly parallel, modular and local architectures. - An inter-module communication strategy, which does not introduce delay or area overhead, named Virtual Borders. - A custom and flexible router to solve the routing conflicts as well as the inter-module communication problems, appearing during the design of DPR systems. - An algorithm addressing the optimization of systems composed of multiple scalable cores, which size can be decided individually, to optimize the system parameters. It is based on a model known as the multi-dimensional multi-choice Knapsack problem. - A reconfiguration engine tailored to the requirements of highly regular and modular architectures. It combines a high reconfiguration throughput with run-time module relocation capabilities, including the support for sub-clock reconfigurable regions and the replication in multiple positions. - A fault injection mechanism which takes advantage of the system reconfiguration engine, as well as the modularity of the proposed reconfigurable architectures, to evaluate the effects of transient and permanent faults in these architectures. - The demonstration of the possibilities of the architectures proposed in this thesis to implement evolvable hardware systems, while keeping a high processing throughput. - The implementation of scalable evolvable hardware systems, which are able to adapt to the fluctuation of the amount of resources available in the system, in an autonomous way. - A parallelization strategy for the H.264/AVC and SVC deblocking filter, which reduces the number of macroblock cycles needed to process the whole frame. - A dynamically scalable architecture that permits the implementation of a novel deblocking filter module, fully compliant with the H.264/AVC and SVC standards, which exploits the macroblock level parallelism of the algorithm. This document is organized in seven chapters. In the first one, an introduction to the technology framework of this thesis, specially focused on dynamic and partial reconfiguration, is provided. The need for the dynamically scalable processing architectures proposed in this work is also motivated in this chapter. In chapter 2, dynamically scalable architectures are described. Description includes most of the architectural contributions of this work. The design flow tailored to the scalable architectures, together with the DREAMs tool provided to implement them, are described in chapter 3. The reconfiguration engine is described in chapter 4. The use of the proposed scalable archtieectures to implement evolvable hardware systems is described in chapter 5, while the scalable deblocking filter is described in chapter 6. Final conclusions of this thesis, and the description of future work, are addressed in chapter 7.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antecedentes Europa vive una situación insostenible. Desde el 2008 se han reducido los recursos de los gobiernos a raíz de la crisis económica. El continente Europeo envejece con ritmo constante al punto que se prevé que en 2050 habrá sólo dos trabajadores por jubilado [54]. A esta situación se le añade el aumento de la incidencia de las enfermedades crónicas, relacionadas con el envejecimiento, cuyo coste puede alcanzar el 7% del PIB de un país [51]. Es necesario un cambio de paradigma. Una nueva manera de cuidar de la salud de las personas: sustentable, eficaz y preventiva más que curativa. Algunos estudios abogan por el cuidado personalizado de la salud (pHealth). En este modelo las prácticas médicas son adaptadas e individualizadas al paciente, desde la detección de los factores de riesgo hasta la personalización de los tratamientos basada en la respuesta del individuo [81]. El cuidado personalizado de la salud está asociado a menudo al uso de las tecnologías de la información y comunicación (TICs) que, con su desarrollo exponencial, ofrecen oportunidades interesantes para la mejora de la salud. El cambio de paradigma hacia el pHealth está lentamente ocurriendo, tanto en el ámbito de la investigación como en la industria, pero todavía no de manera significativa. Existen todavía muchas barreras relacionadas a la economía, a la política y la cultura. También existen barreras puramente tecnológicas, como la falta de sistemas de información interoperables [199]. A pesar de que los aspectos de interoperabilidad están evolucionando, todavía hace falta un diseño de referencia especialmente direccionado a la implementación y el despliegue en gran escala de sistemas basados en pHealth. La presente Tesis representa un intento de organizar la disciplina de la aplicación de las TICs al cuidado personalizado de la salud en un modelo de referencia, que permita la creación de plataformas de desarrollo de software para simplificar tareas comunes de desarrollo en este dominio. Preguntas de investigación RQ1 >Es posible definir un modelo, basado en técnicas de ingeniería del software, que represente el dominio del cuidado personalizado de la salud de una forma abstracta y representativa? RQ2 >Es posible construir una plataforma de desarrollo basada en este modelo? RQ3 >Esta plataforma ayuda a los desarrolladores a crear sistemas pHealth complejos e integrados? Métodos Para la descripción del modelo se adoptó el estándar ISO/IEC/IEEE 42010por ser lo suficientemente general y abstracto para el amplio enfoque de esta tesis [25]. El modelo está definido en varias partes: un modelo conceptual, expresado a través de mapas conceptuales que representan las partes interesadas (stakeholders), los artefactos y la información compartida; y escenarios y casos de uso para la descripción de sus funcionalidades. El modelo fue desarrollado de acuerdo a la información obtenida del análisis de la literatura, incluyendo 7 informes industriales y científicos, 9 estándares, 10 artículos en conferencias, 37 artículos en revistas, 25 páginas web y 5 libros. Basándose en el modelo se definieron los requisitos para la creación de la plataforma de desarrollo, enriquecidos por otros requisitos recolectados a través de una encuesta realizada a 11 ingenieros con experiencia en la rama. Para el desarrollo de la plataforma, se adoptó la metodología de integración continua [74] que permitió ejecutar tests automáticos en un servidor y también desplegar aplicaciones en una página web. En cuanto a la metodología utilizada para la validación se adoptó un marco para la formulación de teorías en la ingeniería del software [181]. Esto requiere el desarrollo de modelos y proposiciones que han de ser validados dentro de un ámbito de investigación definido, y que sirvan para guiar al investigador en la búsqueda de la evidencia necesaria para justificarla. La validación del modelo fue desarrollada mediante una encuesta online en tres rondas con un número creciente de invitados. El cuestionario fue enviado a 134 contactos y distribuido en algunos canales públicos como listas de correo y redes sociales. El objetivo era evaluar la legibilidad del modelo, su nivel de cobertura del dominio y su potencial utilidad en el diseño de sistemas derivados. El cuestionario incluía preguntas cuantitativas de tipo Likert y campos para recolección de comentarios. La plataforma de desarrollo fue validada en dos etapas. En la primera etapa se utilizó la plataforma en un experimento a pequeña escala, que consistió en una sesión de entrenamiento de 12 horas en la que 4 desarrolladores tuvieron que desarrollar algunos casos de uso y reunirse en un grupo focal para discutir su uso. La segunda etapa se realizó durante los tests de un proyecto en gran escala llamado HeartCycle [160]. En este proyecto un equipo de diseñadores y programadores desarrollaron tres aplicaciones en el campo de las enfermedades cardio-vasculares. Una de estas aplicaciones fue testeada en un ensayo clínico con pacientes reales. Al analizar el proyecto, el equipo de desarrollo se reunió en un grupo focal para identificar las ventajas y desventajas de la plataforma y su utilidad. Resultados Por lo que concierne el modelo que describe el dominio del pHealth, la parte conceptual incluye una descripción de los roles principales y las preocupaciones de los participantes, un modelo de los artefactos TIC que se usan comúnmente y un modelo para representar los datos típicos que son necesarios formalizar e intercambiar entre sistemas basados en pHealth. El modelo funcional incluye un conjunto de 18 escenarios, repartidos en: punto de vista de la persona asistida, punto de vista del cuidador, punto de vista del desarrollador, punto de vista de los proveedores de tecnologías y punto de vista de las autoridades; y un conjunto de 52 casos de uso repartidos en 6 categorías: actividades de la persona asistida, reacciones del sistema, actividades del cuidador, \engagement" del usuario, actividades del desarrollador y actividades de despliegue. Como resultado del cuestionario de validación del modelo, un total de 65 personas revisó el modelo proporcionando su nivel de acuerdo con las dimensiones evaluadas y un total de 248 comentarios sobre cómo mejorar el modelo. Los conocimientos de los participantes variaban desde la ingeniería del software (70%) hasta las especialidades médicas (15%), con declarado interés en eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), medicina personalizada (5%), sistemas basados en pHealth (15%), informática médica (10%) e ingeniería biomédica (8%) con una media de 7.25_4.99 años de experiencia en estas áreas. Los resultados de la encuesta muestran que los expertos contactados consideran el modelo fácil de leer (media de 1.89_0.79 siendo 1 el valor más favorable y 5 el peor), suficientemente abstracto (1.99_0.88) y formal (2.13_0.77), con una cobertura suficiente del dominio (2.26_0.95), útil para describir el dominio (2.02_0.7) y para generar sistemas más específicos (2_0.75). Los expertos también reportan un interés parcial en utilizar el modelo en su trabajo (2.48_0.91). Gracias a sus comentarios, el modelo fue mejorado y enriquecido con conceptos que faltaban, aunque no se pudo demonstrar su mejora en las dimensiones evaluadas, dada la composición diferente de personas en las tres rondas de evaluación. Desde el modelo, se generó una plataforma de desarrollo llamada \pHealth Patient Platform (pHPP)". La plataforma desarrollada incluye librerías, herramientas de programación y desarrollo, un tutorial y una aplicación de ejemplo. Se definieron cuatro módulos principales de la arquitectura: el Data Collection Engine, que permite abstraer las fuentes de datos como sensores o servicios externos, mapeando los datos a bases de datos u ontologías, y permitiendo interacción basada en eventos; el GUI Engine, que abstrae la interfaz de usuario en un modelo de interacción basado en mensajes; y el Rule Engine, que proporciona a los desarrolladores un medio simple para programar la lógica de la aplicación en forma de reglas \if-then". Después de que la plataforma pHPP fue utilizada durante 5 años en el proyecto HeartCycle, 5 desarrolladores fueron reunidos en un grupo de discusión para analizar y evaluar la plataforma. De estas evaluaciones se concluye que la plataforma fue diseñada para encajar las necesidades de los ingenieros que trabajan en la rama, permitiendo la separación de problemas entre las distintas especialidades, y simplificando algunas tareas de desarrollo como el manejo de datos y la interacción asíncrona. A pesar de ello, se encontraron algunos defectos a causa de la inmadurez de algunas tecnologías empleadas, y la ausencia de algunas herramientas específicas para el dominio como el procesado de datos o algunos protocolos de comunicación relacionados con la salud. Dentro del proyecto HeartCycle la plataforma fue utilizada para el desarrollo de la aplicación \Guided Exercise", un sistema TIC para la rehabilitación de pacientes que han sufrido un infarto del miocardio. El sistema fue testeado en un ensayo clínico randomizado en el cual a 55 pacientes se les dio el sistema para su uso por 21 semanas. De los resultados técnicos del ensayo se puede concluir que, a pesar de algunos errores menores prontamente corregidos durante el estudio, la plataforma es estable y fiable. Conclusiones La investigación llevada a cabo en esta Tesis y los resultados obtenidos proporcionan las respuestas a las tres preguntas de investigación que motivaron este trabajo: RQ1 Se ha desarrollado un modelo para representar el dominio de los sistemas personalizados de salud. La evaluación hecha por los expertos de la rama concluye que el modelo representa el dominio con precisión y con un balance apropiado entre abstracción y detalle. RQ2 Se ha desarrollado, con éxito, una plataforma de desarrollo basada en el modelo. RQ3 Se ha demostrado que la plataforma es capaz de ayudar a los desarrolladores en la creación de software pHealth complejos. Las ventajas de la plataforma han sido demostradas en el ámbito de un proyecto de gran escala, aunque el enfoque genérico adoptado indica que la plataforma podría ofrecer beneficios también en otros contextos. Los resultados de estas evaluaciones ofrecen indicios de que, ambos, el modelo y la plataforma serán buenos candidatos para poderse convertir en una referencia para futuros desarrollos de sistemas pHealth. ABSTRACT Background Europe is living in an unsustainable situation. The economic crisis has been reducing governments' economic resources since 2008 and threatening social and health systems, while the proportion of older people in the European population continues to increase so that it is foreseen that in 2050 there will be only two workers per retiree [54]. To this situation it should be added the rise, strongly related to age, of chronic diseases the burden of which has been estimated to be up to the 7% of a country's gross domestic product [51]. There is a need for a paradigm shift, the need for a new way of caring for people's health, shifting the focus from curing conditions that have arisen to a sustainable and effective approach with the emphasis on prevention. Some advocate the adoption of personalised health care (pHealth), a model where medical practices are tailored to the patient's unique life, from the detection of risk factors to the customization of treatments based on each individual's response [81]. Personalised health is often associated to the use of Information and Communications Technology (ICT), that, with its exponential development, offers interesting opportunities for improving healthcare. The shift towards pHealth is slowly taking place, both in research and in industry, but the change is not significant yet. Many barriers still exist related to economy, politics and culture, while others are purely technological, like the lack of interoperable information systems [199]. Though interoperability aspects are evolving, there is still the need of a reference design, especially tackling implementation and large scale deployment of pHealth systems. This thesis contributes to organizing the subject of ICT systems for personalised health into a reference model that allows for the creation of software development platforms to ease common development issues in the domain. Research questions RQ1 Is it possible to define a model, based on software engineering techniques, for representing the personalised health domain in an abstract and representative way? RQ2 Is it possible to build a development platform based on this model? RQ3 Does the development platform help developers create complex integrated pHealth systems? Methods As method for describing the model, the ISO/IEC/IEEE 42010 framework [25] is adopted for its generality and high level of abstraction. The model is specified in different parts: a conceptual model, which makes use of concept maps, for representing stakeholders, artefacts and shared information, and in scenarios and use cases for the representation of the functionalities of pHealth systems. The model was derived from literature analysis, including 7 industrial and scientific reports, 9 electronic standards, 10 conference proceedings papers, 37 journal papers, 25 websites and 5 books. Based on the reference model, requirements were drawn for building the development platform enriched with a set of requirements gathered in a survey run among 11 experienced engineers. For developing the platform, the continuous integration methodology [74] was adopted which allowed to perform automatic tests on a server and also to deploy packaged releases on a web site. As a validation methodology, a theory building framework for SW engineering was adopted from [181]. The framework, chosen as a guide to find evidence for justifying the research questions, imposed the creation of theories based on models and propositions to be validated within a scope. The validation of the model was conducted as an on-line survey in three validation rounds, encompassing a growing number of participants. The survey was submitted to 134 experts of the field and on some public channels like relevant mailing lists and social networks. Its objective was to assess the model's readability, its level of coverage of the domain and its potential usefulness in the design of actual, derived systems. The questionnaires included quantitative Likert scale questions and free text inputs for comments. The development platform was validated in two scopes. As a small-scale experiment, the platform was used in a 12 hours training session where 4 developers had to perform an exercise consisting in developing a set of typical pHealth use cases At the end of the session, a focus group was held to identify benefits and drawbacks of the platform. The second validation was held as a test-case study in a large scale research project called HeartCycle the aim of which was to develop a closed-loop disease management system for heart failure and coronary heart disease patients [160]. During this project three applications were developed by a team of programmers and designers. One of these applications was tested in a clinical trial with actual patients. At the end of the project, the team was interviewed in a focus group to assess the role the platform had within the project. Results For what regards the model that describes the pHealth domain, its conceptual part includes a description of the main roles and concerns of pHealth stakeholders, a model of the ICT artefacts that are commonly adopted and a model representing the typical data that need to be formalized among pHealth systems. The functional model includes a set of 18 scenarios, divided into assisted person's view, caregiver's view, developer's view, technology and services providers' view and authority's view, and a set of 52 Use Cases grouped in 6 categories: assisted person's activities, system reactions, caregiver's activities, user engagement, developer's activities and deployer's activities. For what concerns the validation of the model, a total of 65 people participated in the online survey providing their level of agreement in all the assessed dimensions and a total of 248 comments on how to improve and complete the model. Participants' background spanned from engineering and software development (70%) to medical specialities (15%), with declared interest in the fields of eHealth (24%), mHealth (16%), Ambient Assisted Living (21%), Personalized Medicine (5%), Personal Health Systems (15%), Medical Informatics (10%) and Biomedical Engineering (8%) with an average of 7.25_4.99 years of experience in these fields. From the analysis of the answers it is possible to observe that the contacted experts considered the model easily readable (average of 1.89_0.79 being 1 the most favourable scoring and 5 the worst), sufficiently abstract (1.99_0.88) and formal (2.13_0.77) for its purpose, with a sufficient coverage of the domain (2.26_0.95), useful for describing the domain (2.02_0.7) and for generating more specific systems (2_0.75) and they reported a partial interest in using the model in their job (2.48_0.91). Thanks to their comments, the model was improved and enriched with concepts that were missing at the beginning, nonetheless it was not possible to prove an improvement among the iterations, due to the diversity of the participants in the three rounds. From the model, a development platform for the pHealth domain was generated called pHealth Patient Platform (pHPP). The platform includes a set of libraries, programming and deployment tools, a tutorial and a sample application. The main four modules of the architecture are: the Data Collection Engine, which allows abstracting sources of information like sensors or external services, mapping data to databases and ontologies, and allowing event-based interaction and filtering, the GUI Engine, which abstracts the user interface in a message-like interaction model, the Workow Engine, which allows programming the application's user interaction ows with graphical workows, and the Rule Engine, which gives developers a simple means for programming the application's logic in the form of \if-then" rules. After the 5 years experience of HeartCycle, partially programmed with pHPP, 5 developers were joined in a focus group to discuss the advantages and drawbacks of the platform. The view that emerged from the training course and the focus group was that the platform is well-suited to the needs of the engineers working in the field, it allowed the separation of concerns among the different specialities and it simplified some common development tasks like data management and asynchronous interaction. Nevertheless, some deficiencies were pointed out in terms of a lack of maturity of some technological choices, and for the absence of some domain-specific tools, e.g. for data processing or for health-related communication protocols. Within HeartCycle, the platform was used to develop part of the Guided Exercise system, a composition of ICT tools for the physical rehabilitation of patients who suffered from myocardial infarction. The system developed using the platform was tested in a randomized controlled clinical trial, in which 55 patients used the system for 21 weeks. The technical results of this trial showed that the system was stable and reliable. Some minor bugs were detected, but these were promptly corrected using the platform. This shows that the platform, as well as facilitating the development task, can be successfully used to produce reliable software. Conclusions The research work carried out in developing this thesis provides responses to the three three research questions that were the motivation for the work. RQ1 A model was developed representing the domain of personalised health systems, and the assessment of experts in the field was that it represents the domain accurately, with an appropriate balance between abstraction and detail. RQ2 A development platform based on the model was successfully developed. RQ3 The platform has been shown to assist developers create complex pHealth software. This was demonstrated within the scope of one large-scale project, but the generic approach adopted provides indications that it would offer benefits more widely. The results of these evaluations provide indications that both the model and the platform are good candidates for being a reference for future pHealth developments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrical power distribution and commercialization scenario is evolving worldwide, and electricity companies, faced with the challenge of new information requirements, are demanding IT solutions to deal with the smart monitoring of power networks. Two main challenges arise from data management and smart monitoring of power networks: real-time data acquisition and big data processing over short time periods. We present a solution in the form of a system architecture that conveys real time issues and has the capacity for big data management.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Following the processing and validation of JEFF-3.1 performed in 2006 and presented in ND2007, and as a consequence of the latest updated of this library (JEFF-3.1.2) in February 2012, a new processing and validation of JEFF-3.1.2 cross section library is presented in this paper. The processed library in ACE format at ten different temperatures was generated with NJOY-99.364 nuclear data processing system. In addition, NJOY-99 inputs are provided to generate PENDF, GENDF, MATXSR and BOXER formats. The library has undergone strict QA procedures, being compared with other available libraries (e.g. ENDF/B-VII.1) and processing codes as PREPRO-2000 codes. A set of 119 criticality benchmark experiments taken from ICSBEP-2010 has been used for validation purposes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Internet das Coisas é um novo paradigma de comunicação que estende o mundo virtual (Internet) para o mundo real com a interface e interação entre objetos. Ela possuirá um grande número de dispositivos heteregôneos interconectados, que deverá gerar um grande volume de dados. Um dos importantes desafios para seu desenvolvimento é se guardar e processar esse grande volume de dados em aceitáveis intervalos de tempo. Esta pesquisa endereça esse desafio, com a introdução de serviços de análise e reconhecimento de padrões nas camadas inferiores do modelo de para Internet das Coisas, que procura reduzir o processamento nas camadas superiores. Na pesquisa foram analisados os modelos de referência para Internet das Coisas e plataformas para desenvolvimento de aplicações nesse contexto. A nova arquitetura de implementada estende o LinkSmart Middeware pela introdução de um módulo para reconhecimento de padrões, implementa algoritmos para estimação de valores, detecção de outliers e descoberta de grupos nos dados brutos, oriundos de origens de dados. O novo módulo foi integrado à plataforma para Big Data Hadoop e usa as implementações algorítmicas do framework Mahout. Este trabalho destaca a importância da comunicação cross layer integrada à essa nova arquitetura. Nos experimentos desenvolvidos na pesquisa foram utilizadas bases de dados reais, provenientes do projeto Smart Santander, de modo a validar da nova arquitetura de IoT integrada aos serviços de análise e reconhecimento de padrões e a comunicação cross-layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paper submitted to MML 2013, 6th International Workshop on Machine Learning and Music, Prague, September 23, 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Federal Highway Administration, Structures and Applied Mechanics Division, Washington, D.C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.