939 resultados para OCEANIC WATERS
Resumo:
Työssä tutkittiin kokeellisesti rasvaliukoisten uuteaineiden poistamista TMP -prosessin vesikierroista märkähapetuksen avulla. Työn tavoitteena oli tutkia mahdollisuudet hyödyntää TMP -prosessissa vallitsevaa korkeaa lämpötilaa rasvaliukoisten uuteaineiden poistamiseen hapettamalla niitä puhtaalla hapella. Kirjallisuusosassa tarkasteltiin märkähapetuksen teknologiaa, reaktiomekanismia, käytettyjä katalyyttejä, käyttökohteita sekä kustannuksia. Kokeita suoritettiin autoklaavireaktorissa lämpötiloissa 140 °C, 160 °C ja 180 °C. Vetyperoksidia käytettiin katalyyttinä lisätyn vetyperoksidin määrän ollessa 100 - 1800 mg/l ja hapen osapaineen ollessa 0 ( typpiatmosfääri) - 15 baria. Kokeissa tarkasteltiin kemiallisen hapenkulutuksen (COD), rasvaliukoisten uuteaineiden konsentraation, orgaanisen kokonaishiilen (TOC) ja värin muutoksia kokeiden aikana eri lämpötiloilla, hapen osapaineilla ja lisätyn vetyperoksidin määrillä. Kokeissa saavutettiin 30 %:n COD:n vähenemä sekä 90 %:n vähenemä rasvaliukoisissa uuteaineissa lämpötiloissa 160 °C ja 180 °C. Lisäämällä vetyperoksidia katalyyttinä saavutettiin lähes sama tulos lämpötilassa 140 °C. Suurin tässä työssä havaittu ongelma oli lisääntynyt värinmuodostus vedessä olevassa hienojakoisessa kiintoaineessa hapetuksen aikana. Tämän vuoksi lisätutkimukset ovat tarpeellisia sen seikan selvittämiseksi, voidaanko muodostunut väri mahdollisesti poistaa massan valkaisussa.
Resumo:
The perceived low levels of genetic diversity, poor interspecific competitive and defensive ability, and loss of dispersal capacities of insular lineages have driven the view that oceanic islands are evolutionary dead ends. Focusing on the Atlantic bryophyte flora distributed across the archipelagos of the Azores, Madeira, the Canary Islands, Western Europe, and northwestern Africa, we used an integrative approach with species distribution modeling and population genetic analyses based on approximate Bayesian computation to determine whether this view applies to organisms with inherent high dispersal capacities. Genetic diversity was found to be higher in island than in continental populations, contributing to mounting evidence that, contrary to theoretical expectations, island populations are not necessarily genetically depauperate. Patterns of genetic variation among island and continental populations consistently fitted those simulated under a scenario of de novo foundation of continental populations from insular ancestors better than those expected if islands would represent a sink or a refugium of continental biodiversity. We, suggest that the northeastern Atlantic archipelagos have played a key role as a stepping stone for transoceanic migrants. Our results challenge the traditional notion that oceanic islands are the end of the colonization road and illustrate the significant role of oceanic islands as reservoirs of novel biodiversity for the assembly of continental floras.
Resumo:
Ultrafiltration (UF) is widely applied in different separation processes in the pulp and paper industry. The growing need to protect the environment, a lack of pure water and an interest in producing high-value chemicals from compounds present in process waters will probably lead to an increase in the use of UF in the pulp and paper industry. The efficiency and cost-effectiveness of a UF process depends on the applied membrane. The membrane should have a high and stable filtration capacity, a particular selectivity and a long operational lifetime. To meet these requirements a membrane should have a low fouling tendency. In addition, it should withstand the prevailing operational and chemical conditions. This thesis evaluates the performance and applicability of the regenerated cellulose (RC) membranes 00030T and C2 in the treatment of pulp and paper mill process waters based on the requirements above. The results demonstrated that both the tested RC membranes fulfilled well the requirement of high filtration capacity. In addition, in the filtration of a paper mill clear filtrate (CF) the RC membranes were not as greatly affected by variations in the CF quality as a polysulphone membrane. Furthermore, due to their extreme hydrophilicity and weak charge the fouling tendency of the membranes can be expected to be low in pulp and paper mill filtration applications. It is, however, known that fouling cannot be totally avoided even when the membrane is chosen very carefully. This study indicated that carbohydrates influenced negatively on permeability and caused fouling in the filtration of groundwood mill circulation water. Thus, a pre-treatment effectively reducing the amount of carbohydrates might help to maintain a stable capacity. However, the results of the thesis also showed that the removal of some of the possible foulants might just increase the harmful effect of others. Multivariate examination was useful in the understanding of the complicated factors causing the unstable capacity. The thesis also revealed that the 00030T and C2 membranes can be used at high pressure (max. tested pressure 12 bar). The C2 membrane, having a sponge-like substructure, was more pressure resistant, and its performance was more stable at high pressure compared to the UCO30T membrane containing macrovoids in its substructure. Both tested membranes can, according to the results, also be used at temperatures as high as 70°C in acidic, neutral and alkaline conditions. However, the use at extreme conditions might cause faster ageing of the membranes compared to ageing in neutral conditions. The thesis proved that both the tested RC membranes are very suitable for pulp and paper mill applications and that the membranes can be utilised in processes operating in challenging conditions. Thus, they could be used in more demanding applications than supposed earlier.
Resumo:
Migratory marine vertebrates move annually across remote oceanic water masses crossing international borders. Many anthropogenic threats such as overfishing, bycatch, pollution or global warming put millions of marine migrants at risk especially during their long-distance movements. Therefore, precise knowledge about these migratory movements to understand where and when these animals are more exposed to human impacts is vital for addressing marine conservation issues. Because electronic tracking devices suffer from several constraints, mainly logistical and financial, there is emerging interest in finding appropriate intrinsic markers, such as the chemical composition of inert tissues, to study long-distance migrations and identify wintering sites. Here, using tracked pelagic seabirds and some of their own feathers which were known to be grown at different places and times within the annual cycle, we proved the value of biogeochemical analyses of inert tissue as tracers of marine movements and habitat use. Analyses of feathers grown in summer showed that both stable isotope signatures and element concentrations can signal the origin of breeding birds feeding in distinct water masses. However, only stable isotopes signalled water masses used during winter because elements mainly accumulated during the long breeding period are incorporated into feathers grown in both summer and winter. Our findings shed new light on the simple and effective assignment of marine organisms to distinct oceanic areas, providing new opportunities to study unknown migration patterns of secretive species, including in relation to human-induced mortality on specific populations in the marine environment.
Resumo:
Combining headspace (HS) sampling with a needle-trap device (NTD) to determine priority volatile organic compounds (VOCs) in water samples results in improved sensitivity and efficiency when compared to conventional static HS sampling. A 22 gauge stainless steel, 51-mm needle packed with Tenax TA and Carboxen 1000 particles is used as the NTD. Three different HS-NTD sampling methodologies are evaluated and all give limits of detection for the target VOCs in the ng L−1 range. Active (purge-and-trap) HS-NTD sampling is found to give the best sensitivity but requires exhaustive control of the sampling conditions. The use of the NTD to collect the headspace gas sample results in a combined adsorption/desorption mechanism. The testing of different temperatures for the HS thermostating reveals a greater desorption effect when the sample is allowed to diffuse, whether passively or actively, through the sorbent particles. The limits of detection obtained in the simplest sampling methodology, static HS-NTD (5 mL aqueous sample in 20 mL HS vials, thermostating at 50 °C for 30 min with agitation), are sufficiently low as to permit its application to the analysis of 18 priority VOCs in natural and waste waters. In all cases compounds were detected below regulated levels
Resumo:
A flow system coupled to a tungsten coil atomizer in an atomic absorption spectrometer (TCA-AAS) was developed for As(III) determination in waters, by extraction with sodium diethyldithiocarbamate (NaDDTC) as complexing agent, and by sorption of the As(III)-DDTC complex in a micro-column filled with 5 mg C18 reversed phase (10 µL dry sorbent), followed by elution with ethanol. A complete pre-concentration/elution cycle took 208 s, with 30 s sample load time (1.7 mL) and 4 s elution time (71 µL). The interface and software for the synchronous control of two peristaltic pumps (RUN/ STOP), an autosampler arm, seven solenoid valves, one injection valve, the electrothermal atomizer and the spectrometer Read function were constructed. The system was characterized and validated by analytical recovery studies performed both in synthetic solutions and in natural waters. Using a 30 s pre-concentration period, the working curve was linear between 0.25 and 6.0 µg L-1 (r = 0.9976), the retention efficiency was 94±1% (6.0 µg L-1), and the pre-concentration coefficient was 28.9. The characteristic mass was 58 pg, the mean repeatability (expressed as the variation coefficient) was 3.4% (n=5), the detection limit was 0.058 µg L-1 (4.1 pg in 71 µL of eluate injected into the coil), and the mean analytical recovery in natural waters was 92.6 ± 9.5 % (n=15). The procedure is simple, economic, less prone to sample loss and contamination and the useful lifetime of the micro-column was between 200-300 pre-concentration cycles.
Resumo:
Tobacco cultivation in shallow soils and steep landscape under intense use of agrochemicals contributes to environment degradation. In this study, we assessed the concentration of agrochemicals in draw wells used for human consumption and a creek in a small catchment predominantly cropped to tobacco. Chlorpyrifos, flumetralin, and iprodione were determined by gas chromatography with electron capture detection, while imidalcloprid, atrazine, simazine, and clomazone were quantified by high-performance liquid chromatography with UV detection. Considering all sampling sites, all agrochemicals were detected at least once, except for flumetralin. The occurrence of agrochemicals in tobacco crops is a consequence of their fast transfer to surface water.
Resumo:
Knowing the mercury levels of an environment allows a diverse array of biogeochemical studies into the mercury cycle on a local or global scale. Among matrices commonly evaluated, water remains a challenge for research because its mercury levels can be very low, requiring development of complex analytical protocols. Currently, sample preservation methods, protocols that avoid contamination, and analytical techniques with low detection limits allow analysis of mercury in pristine waters. However, different protocols suggest different methods depending on a range of factors such as the characteristics of water sampled and storage time. In remote areas, such as oceanic and Amazonian regions, sample preservation and transport to a laboratory can be difficult, requiring processing of the water during the sampling expedition and the establishment of a field laboratory. Brazilian research on mercury in water can be limited due to difficulty obtaining reagents, lack of laboratory structure, qualified personnel, and financial support. Considering this complexity for analyzing water, we reviewed methodologies for sampling, preservation, and storage of water samples for analysis of the most commonly evaluated mercury species (dissolved gaseous mercury, reactive mercury, methylmercury and total mercury).
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
The objective of this thesis was to study the removal of gases from paper mill circulation waters experimentally and to provide data for CFD modeling. Flow and bubble size measurements were carried out in a laboratory scale open gas separation channel. Particle Image Velocimetry (PIV) technique was used to measure the gas and liquid flow fields, while bubble size measurements were conducted using digital imaging technique with back light illumination. Samples of paper machine waters as well as a model solution were used for the experiments. The PIV results show that the gas bubbles near the feed position have the tendency to escape from the circulation channel at a faster rate than those bubbles which are further away from the feed position. This was due to an increased rate of bubble coalescence as a result of the relatively larger bubbles near the feed position. Moreover, a close similarity between the measured slip velocities of the paper mill waters and that of literature values was obtained. It was found that due to dilution of paper mill waters, the observed average bubble size was considerably large as compared to the average bubble sizes in real industrial pulp suspension and circulation waters. Among the studied solutions, the model solution has the highest average drag coefficient value due to its relatively high viscosity. The results were compared to a 2D steady sate CFD simulation model. A standard Euler-Euler k-ε turbulence model was used in the simulations. The channel free surface was modeled as a degassing boundary. From the drag models used in the simulations, the Grace drag model gave velocity fields closest to the experimental values. In general, the results obtained from experiments and CFD simulations are in good qualitative agreement.
Resumo:
National Health Surveillance Agency (ANVISA) established in the decree number 54 maximum allowed levels for Ni and Pb in mineral and natural waters at 20 µg L-1 and 10 µg L-1, respectively. For screening analysis purposes, the high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) was evaluated for the fast-sequential determination of nickel and lead in mineral waters.Two atomic lines for Ni (232.003 nm - main and 341.477 nm - secondary) and Pb (217.0005 nm - main and 283.306 nm - secondary) at different wavelength integrated absorbance (number of pixels) were evaluated. Sensitivity enhanced with the increase of the number of pixels and with the summation of the atomic lines absorbances. The main figures of merit associated to the HR-CS FAAS technique were compared with that obtained by line-source flame atomic absorption spectrometry (LS FAAS). Water samples were pre-concentrated about 5-fold by evaporation before analysis. Recoveries of Pb significantly varied with increased wavelength integrated absorbance. Better recoveries (92-93%) were observed for higher number of pixels at the main line or summating the atomic lines (90-92%). This influence was irrelevant for Ni, and recoveries in the 92-104% range were obtained in all situations.
Resumo:
Flow injection (FI) methodology, using diffuse reflectance in the visible region of the spectrum, for the analysis of total sulfur in the form of sulfate, precipitated in the form of barium sulfate, is presented. The method was applied to biodiesel, to plant leaves and to natural waters analysis. The analytical signal (S) correlates linearly with sulfate concentration (C) between 20 and 120 ppm, through the equation S=-1.138+0.0934 C (r = 0.9993). The experimentally observed limit of detection is about 10 ppm. The mean R.S.D. is about 3.0 %. Real samples containing sulfate were analyzed and the results obtained by the FI and by the reference batch turbidimetric method using the statistical Student's t-test and F-test were compared.
Resumo:
Measurements of parameters expressed in terms of carbonic species such as Alkalinity and Acidity of saline waters do not analyze the influence of external parameters to the titration such as Total free and associated Carbonic Species Concentration, activity coefficient, ion pairing formation and Residual Liquid Junction Potential in pH measurements. This paper shows the development of F5BC titration function based on the titrations developed by Gran (1952) for the carbonate system of natural waters. For practical use, samples of saline waters from Pocinhos reservoir in Paraiba were submitted to titration and linear regression analysis. Results showed that F5BC involves F1x and F2x Gran functions determination, respectively, for Alkalinity and Acidity calculations without knowing "a priori" the endpoint of the titration. F5BC also allows the determination of the First and Second Apparent Dissociation Constant of the carbonate system of saline and high ionic strength waters.