959 resultados para O-2 UPTAKE
Resumo:
The soil−air−plant pathway is potentially important in the vegetative accumulation of organic pollutants from contaminated soils. While a number of qualitative frameworks exist for the prediction of plant accumulation of organic chemicals by this pathway, there are few quantitative models that incorporate this pathway. The aim of the present study was to produce a model that included this pathway and could quantify its contribution to the total plant contamination for a range of organic pollutants. A new model was developed from three submodels for the processes controlling plant contamination via this pathway: aerial deposition, soil volatilization, and systemic translocation. Using the combined model, the soil−air−plant pathway was predicted to account for a significant proportion of the total shoot contamination for those compounds with log KOA > 9 and log KAW < −3. For those pollutants with log KOA < 9 and log KAW > −3 there was a higher deposition of pollutant via the soil−air−plant pathway than for those chemicals with log KOA > 9 and log KAW < −3, but this was an insignificant proportion of the total shoot contamination because of the higher mobility of these compounds via the soil−root−shoot pathway. The incorporation of the soil−air−plant pathway into the plant uptake model did not significantly improve the prediction of the contamination of vegetation from polluted soils when compared across a range of studies. This was a result of the high variability between the experimental studies where the bioconcentration factors varied by 2 orders of magnitude at an equivalent log KOA. One potential reason for this is the background air concentration of the pollutants under study. It was found background air concentrations would dominate those from soil volatilization in many situations unless there was a soil hot spot of contamination, i.e., >100 mg kg−1.
Resumo:
Use of new technologies, such as virtual reality (VR), is important to corporations, yet understanding of their successful implementation is insuf. ciently developed. In this paper a case study is used to analyse the introduction of VR use in a British housebuilding company. Although the implementation was not successful in the manner initially anticipated, the study provides insight into the process of change, the constraints that inhibit implementation and the relationship between new technology and work organization. Comparison is made with the early use of CAD and similarities and differences between empirical . ndings of the case study and the previous literature are discussed.
Resumo:
Integrated Arable Farming Systems are examined from the perspective of the farmer considering the use of such techniques, and data are presented which suggest that the uptake of the approach may expose the manager to a greater degree of risk. Observations are made about the possible uptake of such systems in the UK and the implications this may have for agricultural and environmental policy in general.
Resumo:
The effect of high-pressure (HP) pretreatment on oil uptake of potato slices is examined in this paper. Potato slices were treated either by HP or thermal blanching, or a combination of thermal blanching followed by HP prior to frying. The effect of HP on starch gelatinization and potato microstructure was assessed by differential scanning calorimeter and environmental scanning electron microscope (ESEM), respectively. After treatments, the slices were fried in sunflower oil at 185 °C for a predetermined time. Frying time was either kept constant (4 min) or varied according to the time needed to reach a desired moisture content of ≈2%. The high pressure applied in this study was found not to be sufficient to cause a significant degree of starch gelatinization. Analysis of the ESEM images showed that blanching had a limited effect on cell wall integrity. HP pretreatment was found to increase the oil uptake marginally. When frying for a fixed time, the highest total oil content was found in slices treated at 200 MPa for 5 min. The oil content was found to increase significantly (p<0.05) to 41.23±1.82 compared to 29.03±0.21 in the control slices. The same effect of pressure on oil content was found when the time of frying varied. On the other hand, HP pretreatment was found to decrease the frying time required to achieve a given moisture content. Thus, high-pressure pretreatment may be used to reduce the frying time, but not oil uptake.
Resumo:
Resistant starch (RS) has been shown to beneficially affect insulin sensitivity in healthy individuals and those with metabolic syndrome, but its effects on human type 2 diabetes (T2DM) are unknown. This study aimed to determine the effects of increased RS consumption on insulin sensitivity and glucose control and changes in postprandial metabolites and body fat in T2DM. Seventeen individuals with well-controlled T2DM (HbA1c 46.6±2 mmol/mol) consumed, in a random order, either 40 g of type 2 RS (HAM-RS2) or a placebo, daily for 12 weeks with a 12-week washout period in between. At the end of each intervention period, participants attended for three metabolic investigations: a two-step euglycemic–hyperinsulinemic clamp combined with an infusion of [6,6-2H2] glucose, a meal tolerance test (MTT) with arterio-venous sampling across the forearm, and whole-body imaging. HAM-RS2 resulted in significantly lower postprandial glucose concentrations (P=0.045) and a trend for greater glucose uptake across the forearm muscle (P=0.077); however, there was no effect of HAM-RS2 on hepatic or peripheral insulin sensitivity, or on HbA1c. Fasting non-esterified fatty acid (NEFA) concentrations were significantly lower (P=0.004) and NEFA suppression was greater during the clamp with HAM-RS2 (P=0.001). Fasting triglyceride (TG) concentrations and soleus intramuscular TG concentrations were significantly higher following the consumption of HAM-RS2 (P=0.039 and P=0.027 respectively). Although fasting GLP1 concentrations were significantly lower following HAM-RS2 consumption (P=0.049), postprandial GLP1 excursions during the MTT were significantly greater (P=0.009). HAM-RS2 did not improve tissue insulin sensitivity in well-controlled T2DM, but demonstrated beneficial effects on meal handling, possibly due to higher postprandial GLP1.
Resumo:
We compare the quasi-equilibrium heat balances, as well as their responses to 4×CO2 perturbation, among three global climate models with the aim to identify and explain inter-model differences in ocean heat uptake (OHU) processes. We find that, in quasi-equilibrium, convective and mixed layer processes, as well as eddy-related processes, cause cooling of the subsurface ocean. The cooling is balanced by warming caused by advective and diapycnally diffusive processes. We also find that in the CO2-perturbed climates the largest contribution to OHU comes from changes in vertical mixing processes and the mean circulation, particularly in the extra-tropics, caused both by changes in wind forcing, and by changes in high-latitude buoyancy forcing. There is a substantial warming in the tropics, a significant part of which occurs because of changes in horizontal advection in extra-tropics. Diapycnal diffusion makes only a weak contribution to the OHU, mainly in the tropics, due to increased stratification. There are important qualitative differences in the contribution of eddy-induced advection and isopycnal diffusion to the OHU among the models. The former is related to the different values of the coefficients used in the corresponding scheme. The latter is related to the different tapering formulations of the isopycnal diffusion scheme. These differences affect the OHU in the deep ocean, which is substantial in two of the models, the dominant region of deep warming being the Southern Ocean. However, most of the OHU takes place above 2000 m, and the three models are quantitatively similar in their global OHU efficiency and its breakdown among processes and as a function of latitude.
Resumo:
An isotope dilution model for partitioning phenylalanine and tyrosine uptake by the mammary gland of the lactating dairy cow is constructed and solved in the steady state. The model contains four intracellular and four extracellular pools and conservation of mass principles are applied to generate the fundamental equations describing the behaviour of the system. The experimental measurements required for model solution are milk secretion and plasma flow rate across the gland in combination with phenylalanine and tyrosine concentrations and plateau isotopic enrichments in arterial and venous plasma and free and protein bound milk during a constant infusion of [1-(13)C]phenylalanine and [2,3,5,6-(2)H]tyrosine tracer. If assumptions are made, model solution enables determination of steady state flows for phenylalanine and tyrosine inflow to the gland, outflow from it and bypass, and flows representing the synthesis and degradation of constitutive protein and hydroxylation. The model is effective in providing information about the fates of phenylalanine and tyrosine in the mammary gland and could be used as part of a more complex system describing amino acid metabolism in the whole ruminant.
Resumo:
About 90% of the anthropogenic increase in heat stored in the climate system is found the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere-ocean general circulation model (AOGCM) with an eddy-permitting ocean component of 1/3 degree resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due to a narrowing of the ACC, caused by an expansion of the Weddell Gyre, and a flattening of the isopycnals, which are explained by a combination of the wind stress forcing and increased precipitation.
Resumo:
The use of potent anticogulant rodenticide ‘resistance-breakers’ is avoided due to their higher toxicity and potential to be more hazardous in the environment [6]. However, in areas where practitioners seek to control resistant rodent infestations, their use may pose less of a risk than applications of ineffective baits. Compounds to which rodents are resistant to, do not provide effective control and create a long-term source of AR in the environment. The higher quantities of anticoagulant rodenticide used show that using ineffective compounds may extend both the period and severity of exposure to non-target animals to anticoagulant rodenticides. Conversely the effective use of resistance-breakers to control anticoagulant rodenticide-resistant rat populations results in lower environmental exposure of anticoagulant rodenticides for non-targets. Of course, the relative toxicity of the different anticoagulant rodenticides will also play an important part in overall risk assessments. However, this can be outweighed by the relative exposure to different anticoagulant rodenticides in such situations.
Resumo:
The biomagnification of trace metals during transfer from contaminated soil to higher trophic levels may potentially result in the exposure of predatory arthropods to toxic concentrations of these elements. This study examined the transfer of Cd and Zn in a soil−plant−arthropod system grown in series of field plots that had received two annual applications of municipal biosolids with elevated levels of Cd and Zn. Results showed that biosolids amendment significantly increased the concentration of Cd in the soil and the shoots of pea plants and the concentration of Zn in the soil, pea roots, shoots, and pods. In addition, the ratio of Cd to Zn concentration showed that Zn was preferentially transferred compared to Cd through all parts of the system. As a consequence, Zn was biomagnified by the system whereas Cd was biominimized. Cd and Zn are considered to exhibit similar behaviors in biological systems. However, the Cd/Zn ratios demonstrated that in this system, Cd is much less labile in the root−shoot−pod and shoot−aphid pathways than Zn.
Resumo:
Parkinson's disease is characterized by the progressive and selective loss of dopaminergic neurons in the substantia nigra. It has been postulated that endogenously formed CysDA (5-S-cysteinyldopamine) and its metabolites may be, in part, responsible for this selective neuronal loss, although the mechanisms by which they contribute to such neurotoxicity are not understood. Exposure of neurons in culture to CysDA caused cell injury, apparent 12-48 h post-exposure. A portion of the neuronal death induced by CysDA was preceded by a rapid uptake and intracellular oxidation of CysDA, leading to an acute and transient activation of ERK2 (extracellular-signal-regulated kinase 2) and caspase 8. The oxidation of CysDA also induced the activation of apoptosis signal-regulating kinase 1 via its de-phosphorylation at Ser967, the phosphorylation of JNK (c-Jun N-terminal kinase) and c-Jun (Ser73) as well as the activation of p38, caspase 3, caspase 8, caspase 7 and caspase 9. Concurrently, the inhibition of complex I by the dihydrobenzothiazine DHBT-1 [7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1,4-benzothiazine-3-carboxylic acid], formed from the intracellular oxidation of CysDA, induces complex I inhibition and the subsequent release of cytochrome c which further potentiates pro-apoptotic mechanisms. Our data suggest a novel comprehensive mechanism for CysDA that may hold relevance for the selective neuronal loss observed in Parkinson's disease.
Resumo:
Gills are the first site of impact by metal ions in contaminated waters. Work on whole gill cells and metal uptake has not been reported before in crustaceans. In this study, gill filaments of the American lobster, Homarus americanus, were dissociated in physiological saline and separated into several cell types on a 30, 40, 50, and 80% sucrose gradient. Cells from each sucrose solution were separately resuspended in physiological saline and incubated in (65)Zn(2+) in order to assess the nature of metal uptake by each cell type. Characteristics of zinc accumulation by each kind of cell were investigated in the presence and absence of 10 mM calcium, variable NaCl concentrations and pH values, and 100 mu M verapamil, nifedipine, and the calcium ionophore A23187. (65)Zn(2+) influxes were hyperbolic functions of zinc concentration (1-1,000 mu M) and followed Michaelis-Menten kinetics. Calcium reduced both apparent zinc binding affinity (K (m)) and maximal transport velocity (J (max)) for 30% sucrose cells, but doubled the apparent maximal transport velocity for 80% sucrose cells. Results suggest that calcium, sodium, and protons enter gill epithelial cells by an endogenous broad-specificity cation channel and trans-stimulate metal uptake by a plasma membrane carrier system. Differences in zinc transport observed between gill epithelial cell types appear related to apparent affinity differences of the transporters in each kind of cell. Low affinity cells from 30% sucrose were inhibited by calcium, while high affinity cells from 80% sucrose were stimulated. (65)Zn(2+) transport was also studied by isolated, intact, gill filament tips. These intact gill fragments generally displayed the same transport properties as did cells from 80% sucrose and provided support for metal uptake processes being an apical phenomenon. A working model for zinc transport by lobster gill cells is presented.
Resumo:
Objective: This study investigated the effect of different sodium content diets on rat adipose tissue carbohydrate metabolism and insulin sensitivity. Methods and Procedures: Male Wistar rats were fed on normal- (0.5% Na+; NS), high- (3.12% Na+; HS), or low-sodium (0.06% Na+; LS) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail-cuff system. An intravenous insulin tolerance test (ivITT) was performed in fasted animals. At the end of each period, rats were killed and blood samples were collected for glucose and insulin determinations. The white adipose tissue (WAT) from abdominal and inguinal subcutaneous (SC) and periepididymal (PE) depots were weighed and processed for adipocyte isolation and measurement of in vitro rates of insulin-stimulated 2-deoxy-d-[H-3]-glucose uptake (2DGU) and conversion of -[U-C-14]-glucose into (CO2)-C-14. Results: After 6 weeks, HS diet significantly increased the BP, SC and PE WAT masses, PE adipocyte size, and plasma insulin concentration. The sodium dietary content did not influence the whole-body insulin sensitivity. A higher half-maximal effective insulin concentration (EC50) from the dose - response curve of 2DGU and an increase in the insulin-stimulated glucose oxidation rate were observed in the isolated PE adipocytes from HS rats. Discussion: The chronic salt overload enhanced the adipocyte insulin sensitivity for glucose uptake and the insulin-induced glucose metabolization, contributing to promote adipocyte hypertrophy and increase the mass of several adipose depots, particularly the PE fat pad.
Resumo:
Insulin-induced glucose uptake by skeletal muscle results from Akt2 activation and is severely impaired during insulin resistance Recently, we and others have demonstrated that BMP9 improves glucose homeostasis in diabetic and non-diabetic rodents. However, the mechanism by which BMP9 modulates insulin action remains unknown. Here we demonstrate that Smad5. a transcription factor activated by BMP9, and Akt2. are upregulated in differentiated L6 myotubes. Smad5, rather than Smad1/8, is downregulated ""in vivo"" and ""in vitro"" by dexamethasone Smad5 knockdown decreased Akt2 expression and serine phosphorylation and insulin-induced glucose uptake, and increased the expression of the lipid phosphatase Ship2. Additionally, binding of Smad5 to Akt2 gene is decreased in dexamethasone-treated rats and Increased in L6 myotubes compared to myoblasts The present study indicates that Smad5 regulates glucose uptake in skeletal muscle by controlling Akt2 expression and phosphorylation These finding reveals Smad5 as a potential target for the therapeutic of type 2 diabetes. (C) 2010 Elsevier Ireland Ltd. All rights reserved.