958 resultados para Numerical results
Resumo:
The anharmonic oscillator under combined sinusoidal and white noise excitation is studied using the Gaussian closure approximation. The mean response and the steady-state variance of the system is obtained by the WKBJ approximation and also by the Fokker Planck equation. The multiple steadystate solutions are obtained and their stability analysis is presented. Numerical results are obtained for a particular set of system parameters. The theoretical results are compared with a digital simulation study to bring out the usefulness of the present approximate theory.
Resumo:
We consider the problem of estimating the optimal parameter trajectory over a finite time interval in a parameterized stochastic differential equation (SDE), and propose a simulation-based algorithm for this purpose. Towards this end, we consider a discretization of the SDE over finite time instants and reformulate the problem as one of finding an optimal parameter at each of these instants. A stochastic approximation algorithm based on the smoothed functional technique is adapted to this setting for finding the optimal parameter trajectory. A proof of convergence of the algorithm is presented and results of numerical experiments over two different settings are shown. The algorithm is seen to exhibit good performance. We also present extensions of our framework to the case of finding optimal parameterized feedback policies for controlled SDE and present numerical results in this scenario as well.
Resumo:
This paper presents a combined experimental, numerical, and theoretical study on the mechanical behaviors of track-shaped concrete-filled steel tubular (SCFRT) stub columns stiffened by rebars under compressive load. A total of 18 track-shaped concrete-filled steel tubular specimens including 12 specimens stiffened by rebars and 6 non-stiffened counterparts are tested, with consideration of parameters including flakiness ratio, concrete strength, and stiffeners. Failure pattern, bearing capacity, and ductility are all analyzed and discussed based on the experimental results. The numerical simulation by finite element (FE) software ABAQUS is also conducted. Based on both experimental and numerical results, theoretical formula to predict the load-bearing capacity of SCFRT stub columns subjected to axial compression loading is established according to the superposition principle of ultimate load-bearing capacity with rational simplification. The proposed theoretical method provides accurate predictions on the load bearing capacity by comparing with experimental results from 18 groups of specimens.
Resumo:
The flow of a micropolar fluid in an orthogonal rheometer is considered. It is shown that an infinite number of exact solutions characterizing asymmetric motions are possible. The expressions for pressure in the fluid, the components of the forces and couples acting on the plates are obtained. The effect of microrotation on the flow is brought out by considering numerical results for the case of coaxially rotating disks.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
A method is presented to find nonstationary random seismic excitations with a constraint on mean square value such that the response variance of a given linear system is maximized. It is also possible to incorporate the dominant input frequency into the analysis. The excitation is taken to be the product of a deterministic enveloping function and a zero mean Gaussian stationary random process. The power spectral density function of this process is determined such that the response variance is maximized. Numerical results are presented for a single-degree system and an earth embankment modeled as shear beam.
Resumo:
An elasticity solution has been obtained for a long circular sandwich cylindrical shell subjected to axisymmetric radial ring load using Love's stress function approach. Numerical results are presented for different ratios of modulus of elasticity of the layers. The results obtained from this analysis have been compared with those obtained from sandwich shell theory due to Fulton.
Resumo:
The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.
Resumo:
Non-linear natural vibration characteristics and the dynamic response of hingeless and fully articulated rotors of rectangular cross-section are studied by using the finite element method. In the formulation of response problems, the global variables are augmented with appropriate additional variables, facilitating direct determination of sub-harmonic response. Numerical results are given showing the effect of the geometric non-linearity on the first three natural frequencies. Response analysis of typical rotors indicates a possibility of substantial sub-harmonic response especially in the fully articulated rotors widely adopted in helicopters.
Resumo:
Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.
Resumo:
A long two-layered circular cylinder having a thin orthotropic outer shell and a thick transversely isotropic core subjected to an axisymmetric radialv line load has been analysed. For analysis of the outer shell the classical thin shell theory was adopted and for analysis of the inner core the elasticity theory was used. The continuity of stresses and deformations at the interface has been satisfied by assumming perfect adhesion between the layers. Numerical results have been presented for two different ratios of outer shell thickness to inner radius and for three different ratios of modulus of elasticity in the radial direction of outer shell to inner core. The results have been compared with the elasticity solution of the same problem to bring out the reliability of this hybrid method. References
Resumo:
Analytical models of IEEE 802.11-based WLANs are invariably based on approximations, such as the well-known mean-field approximations proposed by Bianchi for saturated nodes. In this paper, we provide a new approach for modeling the situation when the nodes are not saturated. We study a State Dependent Attempt Rate (SDAR) approximation to model M queues (one queue per node) served by the CSMA/CA protocol as standardized in the IEEE 802.11 DCF. The approximation is that, when n of the M queues are non-empty, the attempt probability of the n non-empty nodes is given by the long-term attempt probability of n saturated nodes as provided by Bianchi's model. This yields a coupled queue system. When packets arrive to the M queues according to independent Poisson processes, we provide an exact model for the coupled queue system with SDAR service. The main contribution of this paper is to provide an analysis of the coupled queue process by studying a lower dimensional process and by introducing a certain conditional independence approximation. We show that the numerical results obtained from our finite buffer analysis are in excellent agreement with the corresponding results obtained from ns-2 simulations. We replace the CSMA/CA protocol as implemented in the ns-2 simulator with the SDAR service model to show that the SDAR approximation provides an accurate model for the CSMA/CA protocol. We also report the simulation speed-ups thus obtained by our model-based simulation.
Resumo:
Free vibration analysis is carried out to study the vibration characteristics of composite laminates using the modified shear deformation, layered, composite plate theory and employing the Rayleigh-Ritz energy approach. The analysis is presented in a unified form so as to incorporate all different combinations of laminate boundary conditions and with full coverage with regard to the various design parameters of a laminated plate. A parametric study is made using a beam characteristic function as the admissible function for the numerical calculations. The numerical results presented here are for an example case of fully clamped boundary conditions and are compared with previously published results. The effect of parameters, such as the aspect ratio of plates, ply-angle, number of layers and also the thickness ratios of plies in laminates on the frequencies of the laminate, is systematically studied. It is found that for anti-symmetric angle-ply or cross-ply laminates unique numerical values of the thickness ratios exist which improve the vibration characteristics of such laminates. Numerical values of the non-dimensional frequencies and nodal patterns, using the thickness ratio distribution of the plies, are then obtained for clamped laminates, fabricated out of various commonly used composite materials, and are presented in the form of the design curves.
Resumo:
In this paper an attempt is made to obtain deflections of hybrid, laminated, rectangular and skew composite plates. Analysis is performed by employing the Galerkin technique. Numerical results have been obtained for two types of layups employing Kevlar/epoxy and Boron/epoxy laminae. It is observed that for a given aspect ratio the rigidity of the skew plate increases with an increase in the skew angle. Further, for a specified deflection, the hybrid laminates turn out to be lighter.
Resumo:
This paper deals with the pulsatile blood flow in the lung alveolar sheets by idealizing each of them as a channel covered by porous media. As the blood flow in the lung is of low Reynolds number, a creeping flow is assumed in the channel. The analytical and numerical results for the velocity and pressure distribution in the porous medium are presented. The effect of an imposed slip condition is also studied. Comparisons with the corresponding results for the steady-state case are made at the end.