925 resultados para Numerical Analysis
Resumo:
Fekete points are the points that maximize a Vandermonde-type determinant that appears in the polynomial Lagrange interpolation formula. They are well suited points for interpolation formulas and numerical integration. We prove the asymptotic equidistribution of Fekete points in the sphere. The way we proceed is by showing their connection to other arrays of points, the so-called Marcinkiewicz-Zygmund arrays and interpolating arrays, that have been studied recently.
Resumo:
Exposure to solar ultraviolet (UV) light is the main causative factor for skin cancer. UV exposure depends on environmental and individual factors. Individual exposure data remain scarce and development of alternative assessment methods is greatly needed. We developed a model simulating human exposure to solar UV. The model predicts the dose and distribution of UV exposure received on the basis of ground irradiation and morphological data. Standard 3D computer graphics techniques were adapted to develop a rendering engine that estimates the solar exposure of a virtual manikin depicted as a triangle mesh surface. The amount of solar energy received by each triangle was calculated, taking into account reflected, direct and diffuse radiation, and shading from other body parts. Dosimetric measurements (n = 54) were conducted in field conditions using a foam manikin as surrogate for an exposed individual. Dosimetric results were compared to the model predictions. The model predicted exposure to solar UV adequately. The symmetric mean absolute percentage error was 13%. Half of the predictions were within 17% range of the measurements. This model provides a tool to assess outdoor occupational and recreational UV exposures, without necessitating time-consuming individual dosimetry, with numerous potential uses in skin cancer prevention and research.
Resumo:
Comentaris referits a l'article següent: K. J. Vinoy, J. K. Abraham, and V. K. Varadan, “On the relationshipbetween fractal dimension and the performance of multi-resonant dipoleantennas using Koch curves,” IEEE Transactions on Antennas and Propagation, 2003, vol. 51, p. 2296–2303.
Resumo:
The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.
Resumo:
This work provides a general framework for the design of second-order blind estimators without adopting anyapproximation about the observation statistics or the a prioridistribution of the parameters. The proposed solution is obtainedminimizing the estimator variance subject to some constraints onthe estimator bias. The resulting optimal estimator is found todepend on the observation fourth-order moments that can be calculatedanalytically from the known signal model. Unfortunately,in most cases, the performance of this estimator is severely limitedby the residual bias inherent to nonlinear estimation problems.To overcome this limitation, the second-order minimum varianceunbiased estimator is deduced from the general solution by assumingaccurate prior information on the vector of parameters.This small-error approximation is adopted to design iterativeestimators or trackers. It is shown that the associated varianceconstitutes the lower bound for the variance of any unbiasedestimator based on the sample covariance matrix.The paper formulation is then applied to track the angle-of-arrival(AoA) of multiple digitally-modulated sources by means ofa uniform linear array. The optimal second-order tracker is comparedwith the classical maximum likelihood (ML) blind methodsthat are shown to be quadratic in the observed data as well. Simulationshave confirmed that the discrete nature of the transmittedsymbols can be exploited to improve considerably the discriminationof near sources in medium-to-high SNR scenarios.
Resumo:
Aquest text és un recull de procediments per inserir els blocs d'AutoCAD de forma més eficient, en la resolució de problemes prèviament tipificats: la PRIMERA PART descriu protocols d'actuació que l'usuari haurà d'aplicar manualment, mentre que la SEGONA PART ofereix rutines programades en AutoLISP i VisualLISP que l'eximiran d'aquesta obligació.Si ho deixéssim aquí, però, podria semblar que els mateixos mètodes manuals presentats en primer lloc són després els que AutoLISP automatitza; per això convé aclarir que la problemàtica de la PRIMERA PART, tot i que pròxima a la de la SEGONA, és diferent i reprodueix el contingut d'una monografia (BLOCS I GEOMETRIA: 5 EXERCICIS COMENTATS) que forma part del material de suport a l'assignatura ELEMENTS DE CAD, impartida per l'autor en l'ETS d'Enginyeria de Telecomunicació de Barcelona i que té per objecte cobrir el buit bibliogràfic que es detectava en el vessant geomètric de la inserció de blocs, a diferència del que s'ocupa de l'estructura de dades més adient en cada context (incrustació de dibuixos amb INSERT versus vinculació mitjançant REFX), més profusament tractat, proposant una sistematització tipològica dels casos on l'escala és funció lineal d'una distància.La SEGONA PART va més enllà i amplia el repertori d'AutoCAD amb les ordres GINSERT, RATREDIT, INSERTOK, INS2D, INS3D, BLOQUEOK, DESCOMPOK, DEF-TRANSF, APL-TRANSF-V i APL-TRANSF-N, de les quals INS2D i INS3D (INSERTOK és una versió simplificada de INS2D, per a blocs sense atributs) són l'aportació més innovadora i que més lluny porta les potencialitats de la inserció de blocs: resumint-ho en una frase, es tracta d’aconseguir que la inserció d’un bloc (que pot ser l’original, un bloc constituït per una inserció de l’original o un de constituït per la inserció del precedent) s’encabeixi en un marc prèviament establert, a semblança de les ordres ESCALA o GIRA, que mitjançant l'opció Referencia apliquen als objectes seleccionats la transformació d'escalat o de rotació necessària per tal que un element de referència assoleixi una determinada grandària o posició. Tot i que, per identificar amb encert el nucli del problema, serà inevitable introduir una reflexió: quan s’ha tingut la precaució de referir un bloc 2D a un quadrat unitari ortogonal, inserir-lo de manera que s’adapti a qualsevol marc rectangular establert en el dibuix és immediat, però ja no ho és tant concatenar insercions de manera que, a més d’una combinació simple de escalat, gir i translació, l’operació dugui implícita una transformació de cisallament. Perquè és clar que si inserim el bloc girat i convertim la inserció en un bloc que al seu torn tornem a inserir, ara però amb escalat no uniforme, el transformat del quadrat de referència primitiu serà un paral·lelogram, però el problema és: dibuixat un marc romboïdal concret, ¿quin gir caldrà donar a la primera inserció, i quin gir i factors d’escala caldrà aplicar a la segona perquè el quadrat de referència s’adapti al marc? El problema es complica si, a més, volem aprofitar el resultat de la primera inserció per a d’altres paral·lelograms, organitzant un sistema no redundant de insercions intermèdies. Doncs bé: INS2D i INS3D donen satisfacció a aquestes qüestions (la segona ja no contempla l'encaix en un paral·lelogram, sinó en un paral·lelepípede) i són aplicables a blocs proveïts d’atributs, no només de tipus convencional (els continguts en el pla de base del bloc, únics de funcionament garantit amb l’ordre INSERT), sinó també dels situats i orientats lliurement.
Resumo:
In this article we propose a novel method for calculating cardiac 3-D strain. The method requires the acquisition of myocardial short-axis (SA) slices only and produces the 3-D strain tensor at every point within every pair of slices. Three-dimensional displacement is calculated from SA slices using zHARP which is then used for calculating the local displacement gradient and thus the local strain tensor. There are three main advantages of this method. First, the 3-D strain tensor is calculated for every pixel without interpolation; this is unprecedented in cardiac MR imaging. Second, this method is fast, in part because there is no need to acquire long-axis (LA) slices. Third, the method is accurate because the 3-D displacement components are acquired simultaneously and therefore reduces motion artifacts without the need for registration. This article presents the theory of computing 3-D strain from two slices using zHARP, the imaging protocol, and both phantom and in-vivo validation.
Resumo:
The future of high technology welded constructions will be characterised by higher strength materials and improved weld quality with respect to fatigue resistance. The expected implementation of high quality high strength steel welds will require that more attention be given to the issues of crack initiation and mechanical mismatching. Experiments and finite element analyses were performed within the framework of continuum damage mechanics to investigate the effect of mismatching of welded joints on void nucleation and coalescence during monotonic loading. It was found that the damage of undermatched joints mainly occurred in the sandwich layer and the damageresistance of the joints decreases with the decrease of the sandwich layer width. The damage of over-matched joints mainly occurred in the base metal adjacent to the sandwich layer and the damage resistance of the joints increases with thedecrease of the sandwich layer width. The mechanisms of the initiation of the micro voids/cracks were found to be cracking of the inclusions or the embrittled second phase, and the debonding of the inclusions from the matrix. Experimental fatigue crack growth rate testing showed that the fatigue life of under-matched central crack panel specimens is longer than that of over-matched and even-matched specimens. Further investigation by the elastic-plastic finite element analysis indicated that fatigue crack closure, which originated from the inhomogeneousyielding adjacent to the crack tip, played an important role in the fatigue crack propagation. The applicability of the J integral concept to the mismatched specimens with crack extension under cyclic loading was assessed. The concept of fatigue class used by the International Institute of Welding was introduced in the parametric numerical analysis of several welded joints. The effect of weld geometry and load condition on fatigue strength of ferrite-pearlite steel joints was systematically evaluated based on linear elastic fracture mechanics. Joint types included lap joints, angle joints and butt joints. Various combinations of the tensile and bending loads were considered during the evaluation with the emphasis focused on the existence of both root and toe cracks. For a lap joint with asmall lack-of-penetration, a reasonably large weld leg and smaller flank angle were recommended for engineering practice in order to achieve higher fatigue strength. It was found that the fatigue strength of the angle joint depended strongly on the location and orientation of the preexisting crack-like welding defects, even if the joint was welded with full penetration. It is commonly believed that the double sided butt welds can have significantly higher fatigue strength than that of a single sided welds, but fatigue crack initiation and propagation can originate from the weld root if the welding procedure results in a partial penetration. It is clearly shown that the fatigue strength of the butt joint could be improved remarkably by ensuring full penetration. Nevertheless, increasing the fatigue strength of a butt joint by increasing the size of the weld is an uneconomical alternative.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.
Resumo:
We consider the numerical treatment of the optical flow problem by evaluating the performance of the trust region method versus the line search method. To the best of our knowledge, the trust region method is studied here for the first time for variational optical flow computation. Four different optical flow models are used to test the performance of the proposed algorithm combining linear and nonlinear data terms with quadratic and TV regularization. We show that trust region often performs better than line search; especially in the presence of non-linearity and non-convexity in the model.
Resumo:
Peer-reviewed
Resumo:
A general method for instantaneous and time-dependent serviceability analysis of plane concrete frames is presented. The methodology is based in an extension of the classic matrix formulation for bars. The main aspects influencing the behaviour of the structural concrete are considered: cracking, creep, shrinkage or prestress losses. To simulate the effect of cracking a smeared model (developed in Part II) based on the modification of the tensile branch of the concrete stress-strain relationship is adopted. The general approach considered permits the application to different materials and constitutive laws. Sequential construction (sectional and structural), incorporation of reinforcement, consideration of the loads history; placing and removing shores, and restraining or releasing in boundary conditions are considered. Some examples are included to highlight the capabilities of the model
Resumo:
This paper presents a general methodology to adjust the coefficients defining a constitutive law for tensioned concrete to simulate, under serviceability conditions, the behaviour of cracked concrete members subjected to simple and combined bending (with axial compressive forces). Although experimental results could be used to obtain the mentioned objective, in this work the models proposed by the CEB are utilized, in order to obtain more general conclusions not subjected to specific experiments. A numerical parametrical analysis is performed to determine the more significant variables influencing the Tension-Stiffening effect and simplified closed-form solution is derived for rectangular sections. A systematic study has been to verify the ability of the method to simulate long-term effects. The methodology can be implemented as an initial process in a general model of analysis like the one presented in Part I
Resumo:
Direct-driven permanent magnet synchronous generator is one of the most promising topologies for megawatt-range wind power applications. The rotational speed of the direct-driven generator is very low compared with the traditional electrical machines. The low rotational speed requires high torque to produce megawatt-range power. The special features of the direct-driven generators caused by the low speed and high torque are discussed in this doctoral thesis. Low speed and high torque set high demands on the torque quality. The cogging torque and the load torque ripple must be as low as possible to prevent mechanical failures. In this doctoral thesis, various methods to improve the torque quality are compared with each other. The rotor surface shaping, magnet skew, magnet shaping, and the asymmetrical placement of magnets and stator slots are studied not only by means of torque quality, but also the effects on the electromagnetic performance and manufacturability of the machine are discussed. The heat transfer of the direct-driven generator must be designed to handle the copper losses of the stator winding carrying high current density and to keep the temperature of the magnets low enough. The cooling system of the direct-driven generator applying the doubly radial air cooling with numerous radial cooling ducts was modeled with a lumped-parameter-based thermal network. The performance of the cooling system was discussed during the steady and transient states. The effect of the number and width of radial cooling ducts was explored. The large number of radial cooling ducts drastically increases the impact of the stack end area effects, because the stator stack consists of numerous substacks. The effects of the radial cooling ducts on the effective axial length of the machine were studied by analyzing the crosssection of the machine in the axial direction. The method to compensate the magnet end area leakage was considered. The effect of the cooling ducts and the stack end area effects on the no-load voltages and inductances of the machine were explored by using numerical analysis tools based on the three-dimensional finite element method. The electrical efficiency of the permanent magnet machine with different control methods was estimated analytically over the whole speed and torque range. The electrical efficiencies achieved with the most common control methods were compared with each other. The stator voltage increase caused by the armature reaction was analyzed. The effect of inductance saturation as a function of load current was implemented to the analytical efficiency calculation.