984 resultados para Nuclear Export Signal
Resumo:
The work described in this thesis is directed to the examination of the hypothesis that ultrasound may be used to perturb molecular motion in the liquid phase. These changes can then be detected by nuclear magnetic resonance (NMR) in spin-lattice and spin-spin relaxation times. The objective being to develop a method capable of reducing the pulsed NMR acquisition times of slowly relaxing nuclei. The thesis describes the theoretical principles underlying both NMR spectroscopy and ultrasonics with particular attention being paid to factors that impinge on testing the above hypothesis. Apparatus has been constructed to enable ultrasound at frequencies between 1 and 10 mega-hertz with a variable power up to 100W/cm-2 to be introduced in the NMR sample. A broadband high frequency generator is used to drive PZT piezo-electric transducer via various transducer to liquid coupling arrangements. A commercial instrument of 20 kilo-hertz has also been employed to test the above hypothesis and also to demonstrate the usefulness of ultrasound in sonochemistry. The latter objective being, detection of radical formation in monomer and polymer ultrasonic degradation. The principle features of the results obtained are: Ultrasonic perturbation of T1 is far smaller for pure liquids than is for mixtures. The effects appear to be greater on protons (1H) than on carbon-13 nuclei (13C) relaxation times. The observed effect of ultrasonics is not due to temperature changes in the sample. As the power applied to the transducer is progressively increased T1 decreases to a minimum and then increases. The T1's of the same nuclei in different functional groups are influenced to different extents by ultrasound. Studies of the 14N resonances from an equimolar mixture of N, N-dimethylformamide and deuterated chloroform with ultrasonic frequencies at 1.115, 6, 6.42 and 10 MHz show that as the frequency is increased the NMR signal to noise ratio decreases to zero at the Larmor frequency of 6.42 MHz and then again rises. This reveals the surprising indication that an effect corresponding to nuclear acoustic saturation in the liquid may be observable. Ultrasonic irradiation of acidified ammonium chloride solution at and around 6.42 MHz appears to cause distinctive changes in the proton-nitrogen J coupling resonance at 89.56 MHz. Ultrasonic irradiation of N, N-dimethylacetamide at 2 KHz using the lowest stable power revealed the onset of coalescence in the proton spectrum. The corresponding effect achieved by direct heating required a temperature rise of approximately 30oC. The effects of low frequency (20 KHz) on relaxation times appear to be nil. Detection of radical formation proved difficult but is still regarded as the principle route for monomer and polymer degradation. The initial hypothesis is considered proven with the results showing significant changes in the mega-hertz region and none at 20 KHz.
Resumo:
The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^
Resumo:
We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 +/- 0.7 (stat) +/- 6.7 (syst) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principles calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.
Resumo:
Improving the representation of the hydrological cycle in Atmospheric General Circulation Models (AGCMs) is one of the main challenges in modeling the Earth's climate system. One way to evaluate model performance is to simulate the transport of water isotopes. Among those available, tritium (HTO) is an extremely valuable tracer, because its content in the different reservoirs involved in the water cycle (stratosphere, troposphere, ocean) varies by order of magnitude. Previous work incorporated natural tritium into LMDZ-iso, a version of the LMDZ general circulation model enhanced by water isotope diagnostics. Here for the first time, the anthropogenic tritium injected by each of the atmospheric nuclear-bomb tests between 1945 and 1980 has been first estimated and further implemented in the model; it creates an opportunity to evaluate certain aspects of LDMZ over several decades by following the bomb-tritium transient signal through the hydrological cycle. Simulations of tritium in water vapor and precipitation for the period 1950-2008, with both natural and anthropogenic components, are presented in this study. LMDZ-iso satisfactorily reproduces the general shape of the temporal evolution of tritium. However, LMDZ-iso simulates too high a bomb-tritium peak followed by too strong a decrease of tritium in precipitation. The too diffusive vertical advection in AGCMs crucially affects the residence time of tritium in the stratosphere. This insight into model performance demonstrates that the implementation of tritium in an AGCM provides a new and valuable test of the modeled atmospheric transport, complementing water stable isotope modeling.
Resumo:
Cuando un haz policromático de neutrones pasa a través de un material, los neutrones de distintas longitudes de onda son atenuados en formas muy diferentes. Como resultado, el espectro de energía del haz de neutrones cambia cuando una muestra es colocada frente el haz. Un análisis detallado del cociente de intensidad entre los haces de transmitido e incidente puede proporcionar una gran cantidad de información acerca de la estructura cristalina y microestructura de la muestra, definidas a través de la sección eficaz total del material. Para neutrones térmicos y sub-térmicos, el ordenamiento y movimiento de los átomos a escala microscópica define en forma precisa la dependencia de esta magnitud con la energía del neutrón incidente. Así, la variación con la energía de la sección eficaz total de los sólidos debido a la estructura de los átomos para distancias entre 0,1 y 100 Å se encuentra bien establecida, y es explotada en el estudio de estructuras cristalinas y de los movimientos vibracionales y rotacionales. Como contrapartida, el efecto de la estructura mesoscópica de los materiales, esto es para dimensiones entre 0,1 y 100 µm, sobre la sección eficaz total ha sido mucho menos estudiado, a pesar de provocar cambios profundos en esta magnitud. En esta Tesis estudiamos y formalizamos la dependencia de la sección eficaz total con características microestructurales tales como la porosidad, y la distribución de tamaños y orientaciones de los granos que componen los materiales, y desarrollamos modelos teóricos a partir de las características microestructurales de muestras de interés nuclear con diferente microestructura. Estos modelos permiten describir la contribuci ón de la componente elástica coherente de la seción eficaz total sobre los espectros de transmisión de neutrones e introducen parámetros como la cantidad de cristales que conforman el material, su estructura cristalina, parámetros de red, mosaicidad, estructura de poros u orientación preferencial de granos, para describir la sección total de materiales monocristalinos o policristalinos. En todos los casos, los modelos desarrollados fueron implementados en una biblioteca basada en el lenguaje computacional MATLAB y fueron comparados con secciones eficaces totales obtenidas en experimentos de transmisión de neutrones realizados en el Departamento de Física de Neutrones del Centro Atómico Bariloche y en ISIS Facility, Reino Unido. Los novedosos modelos microestructurales propuestos describen fielmente los experimentos desarrollados sobre muestras con distinta microestructura, lo que permite el empleo de los mismos en un código de refinamiento sobre los datos experimentales. Aquí, desarrollamos herramientas computacionales que ajustan por cuadrados mínimos no lineales los modelos paramétricos representativos de cada microestructura, sobre la sección eficaz total o la transmisión experimental, para determinar parámetros microestructurales de la muestra a partir de experimentos de transmisión de neutrones con resolución en longitud de onda. Los resultados son de particular relevancia para la interpretación y el análisis cuantitativo de las imágenes realizadas por la técnica de radiografía neutrónica con resolución en energía, que ha recibido un gran impulso en años recientes.
Resumo:
Cuando un haz policromático de neutrones pasa a través de un material, los neutrones de distintas longitudes de onda son atenuados en formas muy diferentes. Como resultado, el espectro de energía del haz de neutrones cambia cuando una muestra es colocada frente el haz. Un análisis detallado del cociente de intensidad entre los haces de transmitido e incidente puede proporcionar una gran cantidad de información acerca de la estructura cristalina y microestructura de la muestra, definidas a través de la sección eficaz total del material. Para neutrones térmicos y sub-térmicos, el ordenamiento y movimiento de los átomos a escala microscópica define en forma precisa la dependencia de esta magnitud con la energía del neutrón incidente. Así, la variación con la energía de la sección eficaz total de los sólidos debido a la estructura de los átomos para distancias entre 0,1 y 100 Å se encuentra bien establecida, y es explotada en el estudio de estructuras cristalinas y de los movimientos vibracionales y rotacionales. Como contrapartida, el efecto de la estructura mesoscópica de los materiales, esto es para dimensiones entre 0,1 y 100 µm, sobre la sección eficaz total ha sido mucho menos estudiado, a pesar de provocar cambios profundos en esta magnitud. En esta Tesis estudiamos y formalizamos la dependencia de la sección eficaz total con características microestructurales tales como la porosidad, y la distribución de tamaños y orientaciones de los granos que componen los materiales, y desarrollamos modelos teóricos a partir de las características microestructurales de muestras de interés nuclear con diferente microestructura. Estos modelos permiten describir la contribuci ón de la componente elástica coherente de la seción eficaz total sobre los espectros de transmisión de neutrones e introducen parámetros como la cantidad de cristales que conforman el material, su estructura cristalina, parámetros de red, mosaicidad, estructura de poros u orientación preferencial de granos, para describir la sección total de materiales monocristalinos o policristalinos. En todos los casos, los modelos desarrollados fueron implementados en una biblioteca basada en el lenguaje computacional MATLAB y fueron comparados con secciones eficaces totales obtenidas en experimentos de transmisión de neutrones realizados en el Departamento de Física de Neutrones del Centro Atómico Bariloche y en ISIS Facility, Reino Unido. Los novedosos modelos microestructurales propuestos describen fielmente los experimentos desarrollados sobre muestras con distinta microestructura, lo que permite el empleo de los mismos en un código de refinamiento sobre los datos experimentales. Aquí, desarrollamos herramientas computacionales que ajustan por cuadrados mínimos no lineales los modelos paramétricos representativos de cada microestructura, sobre la sección eficaz total o la transmisión experimental, para determinar parámetros microestructurales de la muestra a partir de experimentos de transmisión de neutrones con resolución en longitud de onda. Los resultados son de particular relevancia para la interpretación y el análisis cuantitativo de las imágenes realizadas por la técnica de radiografía neutrónica con resolución en energía, que ha recibido un gran impulso en años recientes.
Resumo:
Three types of phospholipases, phospholipase D, secreted phospholipase A2, and patatin-related phospholipase A (pPLA) have functions in auxin signal transduction. Potential linkage to auxin receptors ABP1 or TIR1, their rapid activation or post-translational activation mechanisms, and downstream functions regulated by these phospholipases is reviewed and discussed. Only for pPLA all aspects are known at least to some detail. Evidence is gathered that all these signal reactions are located in the cytosol and seem to merge on regulation of PIN-catalyzed auxin efflux transport proteins. As a consequence, auxin concentration in the nucleus is also affected and this regulates the E3 activity of this auxin receptor. We showed that ABP1, PIN2, and pPLA, all outside the nucleus, have an impact on regulation of auxin-induced genes within 30 min. We propose that regulation of PIN protein activities and of auxin efflux transport are the means to coordinate ABP1 and TIR1 activity and that no physical contact between components of the ABP1-triggered cytosolic pathways and TIR1-triggered nuclear pathways of signaling is necessary to perform this.
Resumo:
The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.
Resumo:
Ethylene is an essential plant hormone involved in nearly all stages of plant growth and development. EIN2 (ETHYLENE INSENSITIVE2) is a master positive regulator in the ethylene signaling pathway, consisting of an N-terminal domain and a C-terminal domain. The EIN2 N-terminal domain localizes to the endoplasmic reticulum (ER) membrane and shows sequence similarity to Nramp metal ion transporters. The cytosolic C-terminal domain is unique to plants and signals downstream. There have been several major gaps in our knowledge of EIN2 function. It was unknown how the ethylene signal gets relayed from the known upstream component CTR1 (CONSTITUTIVE RESPONSE1) a Ser/Thr kinase at the ER, to EIN2. How the ethylene signal was transduced from EIN2 to the next downstream component transcription factor EIN3 (ETHYLENE INSENSITIVE3) in the nucleus was also unknown. The N-terminal domain of EIN2 shows homology to Nramp metal ion transporters and whether EIN2 can also function as a metal transporter has been a question plaguing the ethylene field for almost two decades. Here, EIN2 was found to interact with the CTR1 protein kinase, leading to the discovery that CTR1 phosphorylates the C-terminal domain of EIN2 in Arabidopsis thaliana. Using tags at the termini of EIN2, it was deduced that in the presence of ethylene, the EIN2 C-terminal domain is cleaved and translocates into the nucleus, where it could somehow activate downstream ethylene responses. The EIN2 C-terminal domain interacts with nuclear proteins, RTE3 and EER5, which are components of the TREX-2 mRNA export complex, although the role of these interactions remains unclear. The EIN2 N-terminal domain was found to be capable of divalent metal transport when expressed in E. coli and S. cerevisiae leading to the hypothesis that metal transport plays a role in ethylene signaling. This hypothesis was tested using a novel missense allele, ein2 G36E, substituting a highly conserved residue that is required for metal transport in Nramp proteins. This G36E substitution did not disrupt metal ion transport of EIN2, but the ethylene insensitive phenotype of this mutant indicates that the EIN2 N-terminal domain is important for positively regulating the C-terminal domain. The defect of the ein2 G36E mutant does not prevent proper expression or subcellular localization, but might affect protein modifications. The ein2 G36E allele is partially dominant, mostly likely displaying haploinsufficiency. Overexpression of the EIN2 N-terminal domain in the ein2 G36E mutant did not rescue ethylene insensitivity, suggesting the N-terminal domain functions in cis to regulate the C-terminal domain. These findings advance our knowledge of EIN2, which is critical to understanding ethylene signaling.
Resumo:
Breast cancer, the most commonly diagnosed type of cancer in women, is a major cause of morbidity and mortality in the western world. Well-established risk factors of breast cancer are mostly related to women’s reproductive history, such as early menarche, late first pregnancy and late menopause. Survival rates have improved due to a combination of factors, including better health education, early detection with large-scale use of screening mammogram, improved surgical techniques, as well as widespread use of adjuvant therapy. At initial presentation, clinicopathological features of breast cancer such as age, nodal status, tumour size, tumour grade, and hormonal receptor status are considered to be the standard prognostic and predictive markers of patient survival, and are used to guide appropriate treatment strategies. Lymphovascular invasion (LBVI), including lymphatic (LVI) and blood (BVI) vessel invasion, has been reported to be prognostic and merit accurate evaluation, particularly in patients with node negative tumours who might benefit from adjuvant chemotherapy. There is a lack of standard assessment and agreement on distinguishing LVI from BVI despite the major challenges in the field. A systematic review of the literatures, examining methods of detection and the prognostic significance of LBVI, LVI and BVI, was carried out. The majority of studies used haematoxylin and eosin (H&E) and classical histochemistry to identify LVI and BVI. Only few recent studies used immunohistochemistry (IHC) staining of the endothelium lining lymphatic and blood vessels, and were able to show clear differences between LVI and BVI. The prognostic significance of LBVI and LVI was well-documented and strongly associated with aggressive features of breast tumours, while the prognostic value and the optimal detection method of BVI were unclear. Assessment and prognostic value of LBVI on H&E sections (LBVIH&E) was examined and compared to that of LVI and BVI detected using IHC with D2-40 for LVI (LVID2–40) and Factor VIII for BVI (BVIFVIII) in patients with breast cancer including node negative and triple negative patients (n=360). LBVIH&E, LVID2–40 and BVIFVIII were present in 102 (28%), 127 (35%) and 59 (16%) patients respectively. In node negative patients (206), LBVIH&E, LVID2–40 and BVIFVIII were present in 41 (20%), 53 (26%) and 21 (10%) respectively. In triple negative patients (102), LBVIH&E, LVID2–40 and BVIFVIII were present in 35 (29%), 36 (35%) and 14 (14%) respectively. LBVIH&E, LVID2–40 and BVIFVIII were all significantly associated with tumour recurrence in all cohorts. On multivariate survival analysis, only LVID2–40 and BVIFVIII were independent predictors of cancer specific survival (CSS) in the whole cohort (P=0.022 and P<0.001 respectively), node negative (P=0.008 and P=0.001 respectively) and triple negative patients (P=0.014 and P<0.001 respectively). Assessment of LVI and BVI by IHC, using D2-40 and Factor VIII, improves prediction of outcome in patients with node negative and triple negative breast cancer and was superior to the conventional detection method. Breast cancer is recognised as a complex molecular disease and histologically identical tumours may have highly variable outcomes, including different responses to therapy. Therefore, there is a compelling need for new prognostic and predictive markers helpful of selecting patients at risk and patients with aggressive diseases who might benefit from adjuvant and targeted therapy. It is increasingly recognised that the development and progression of human breast cancer is not only determined by genetically abnormal cells, but also dependent on complex interactions between malignant cells and the surrounding microenvironment. This has led to reconsider the features of tumour microenvironment as potential predictive and prognostic markers. Among these markers, tumour stroma percentage (TSP) and tumour budding, as well as local tumour inflammatory infiltrate have received recent attention. In particular, the local environment of cytokines, proteases, angiogenic and growth factors secreted by inflammatory cells and stromal fibroblasts has identified crucial roles in facilitating tumour growth, and metastasis of cancer cells through lymphatic and/or blood vessel invasion. This might help understand the underlying process promoting tumour invasion into these vessels. An increase in the proportion of tumour stroma and an increase in the dissociation of tumour cells have been associated with poorer survival in a number of solid tumours, including breast cancer. However, the interrelationship between these variables and other features of the tumour microenvironment in different subgroups of breast cancer are not clear. Also, whether their prognostic values are independent of other components of the tumour microenvironment have yet to be identified. Therefore, the relationship between TSP, clinicopathological characteristics and outcome in patients with invasive ductal breast cancer, in particular node negative and triple negative disease was examined in patients with invasive ductal breast cancer (n=361). The TSP was assessed on the haematoxylin and eosin-stained tissue sections. With a cut-off value of 50% TSP, patients with ≤50% stroma were classified as the low-TSP group and those with >50% stroma were classified as the high-TSP group. A total of 109 (30%) patients had high TSP. Patients with high TSP were old age (P=0.035), had involved lymph node (P=0.049), Her-2 positive tumours (P=0.029), low-grade peri-tumoural inflammatory infiltrate (P=0.034), low CD68+ macrophage infiltrate (P<0.001), low CD4+ (P=0.023) and low CD8+ T-lymphocytes infiltrate (P=0.017), tumour recurrence (P=0.015) and shorter CSS (P<0.001). In node negative patients (n=207), high TSP was associated with low CD68+ macrophage infiltrate (P=0.001), low CD4+ (P=0.040) and low CD8+ T-lymphocytes infiltrate (P=0.016) and shorter CSS (P=0.005). In triple negative patients (n=103), high TSP was associated with increased tumour size (P=0.017) high tumour grade (P=0.014), low CD8+ T-lymphocytes infiltrate (P=0.048) and shorter CSS (P=0.041). The 15-year cancer specific survival rate was 79% vs 21% in the low-TSP group vs high-TSP group. On multivariate survival analysis, a high TSP was associated with reduced CSS in the whole cohort (P=0.007), node negative patients (P=0.005) and those who received systemic adjuvant therapy (P=0.016), independent of other pathological characteristics including local host inflammatory responses. Therefore, a high TSP in invasive ductal breast cancer was associated with recurrence and poorer long-term survival. The inverse relation with the tumour inflammatory infiltrate highlights the importance of the amount of tumour stroma on immunological response in patients with invasive ductal breast cancer. Implementing this simple and reproducible parameter in routine pathological examination may help optimise risk stratification in patients with breast cancer. Similarly, the relationship between tumour budding, clinicopathological characteristics and outcome was examined in patients with invasive ductal breast cancer (n=474), using routine pathological sections. Tumour budding was associated with several adverse pathological characteristics, including positive lymph node (P=0.009), presence of LVI (P<0.001), and high TSP (P=0.001) and low-grade general peri-tumural inflammatory infiltrative (P=0.002). In node negative patients, a high tumour budding was associated with presence of LVI (P<0.001) and low-grade general peri-tumural inflammatory infiltrative (P=0.038). On multivariate survival analysis, tumour budding was associated with reduced CSS (P=0.001), independent of nodal status, tumour necrosis, CD8+ and CD138+ inflammatory cells infiltrate, LVI, BVI and TSP. Furthermore, tumour budding was independently associated with reduced CSS in node negative patients (P=0.004) and in those who have low TSP (P=0.003) and high-grade peri-tumoural inflammatory infiltrative (P=0.012). A high tumour budding was significantly associated with shorter CSS in luminal B and triple negative breast cancer subtypes (all P<0.001). Therefore, tumour budding was a significant predictor of poor survival in patients with invasive ductal breast cancer, independent of adverse pathological characteristics and components of tumour microenvironment. These results suggest that tumour budding may promote disease progression through a direct effect on local and distant invasion into lymph nodes and lymphatic vessels. Therefore, detection of tumour buds at the stroma invasive front might therefore represent a morphologic link between tumour progression, lymphatic invasion, spread of tumour cells to regional lymph nodes, and the establishment of metastatic dissemination. Given the potential importance of the tumour microenvironment, the characterisation of intracellular signalling pathways is important in the tumour microenvironment and is of considerable interest. One plausible signalling molecule that links tumour stroma, inflammatory cell infiltrate and tumour budding is the signal transducer and activator of transcription (STAT). The relationship between total and phosphorylated STAT1 (ph-STAT1), and total and ph-STAT3 tumour cell expression, components of tumour microenvironment and survival in patients with invasive ductal breast cancer was examined. IHC of total and ph-STAT1/STAT3 was performed on tissue microarray of 384 breast cancer specimens. Cellular STAT1 and cellular STAT3 expression at both cytoplasmic and nuclear locations were combined and identified as STAT1/STAT3 tumour cell expression. These results were then related to CSS and phenotypic features of the tumour and host. A high ph-STAT1 and a high ph-STAT3 tumour cell expression was associated with increased ER (P=0.001 and P<0.001 respectively) and PR (all P<0.05), reduced tumour grade (P=0.015 and P<0.001 respectively) and necrosis (all P=0.001). Ph-STAT1 was associated with increased general peri-tumoural inflammatory infiltrate (P=0.007) and ph-STAT3 was associated with lower CD4+ T-lymphocyte infiltrate (P=0.024). On multivariate survival analysis, including both ph-STAT1 and ph-STAT3 tumour cell expression, only high ph-STAT3 tumour cell expression was significantly associated with improved CSS (P=0.010) independent of other tumour and host-based factors. In patients with high necrosis grade, high ph-STAT3 tumour cell expression was independent predictor of improved CSS (P=0.021). Ph-STAT1 and ph-STAT3 were also significantly associated with improved cancer specific survival in luminal A and B subtypes. STAT1 and STAT3 tumour cell expression appeared to be an important determinant of favourable outcome in patients with invasive ductal breast cancer. The present results suggest that STATs may affect disease outcome through direct impact on tumour cells, and the surrounding microenvironment. The above observations of the present thesis point to the importance of the tumour microenvironment in promoting tumour budding, LVI and BVI. The observations from STATs work may suggest that an important driving mechanism for the above associations is the presence of tumour necrosis, probably secondary to hypoxia. Further work is needed to examine the interaction of other molecular pathways involved in the tumour microenvironment, such as HIF and NFkB in patients with invasive ductal breast cancer.