943 resultados para Novel fungal species


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Physiological and genetic studies with the ramosus (rms) mutants in garden pea (Pisum sativum) and more axillary shoots (max) mutants in Arabidopsis (Arabidopsis thaliana) have shown that shoot branching is regulated by a network of long-distance signals. Orthologous genes RMS1 and MAX4 control the synthesis of a novel graft-transmissible branching signal that may be a carotenoid derivative and acts as a branching inhibitor. In this study, we demonstrate further conservation of the branching control system by showing that MAX2 and MAX3 are orthologous to RMS4 and RMS5, respectively. This is consistent with the longstanding hypothesis that branching in pea is regulated by a novel long-distance signal produced by RMS1 and RMS5 and that RMS4 is implicated in the response to this signal. We examine RMS5 expression and show that it is more highly expressed relative to RMS1, but under similar transcriptional regulation as RMS1. Further expression studies support the hypothesis that RMS4 functions in shoot and rootstock and participates in the feedback regulation of RMS1 and RMS5 expression. This feedback involves a second novel long-distance signal that is lacking in rms2 mutants. RMS1 and RMS5 are also independently regulated by indole-3-acetic acid. RMS1, rather than RMS5, appears to be a key regulator of the branching inhibitor. This study presents new interactions between RMS genes and provides further evidence toward the ongoing elucidation of a model of axillary bud outgrowth in pea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite differences in their morphologies, comparative analyses of 16S rRNA gene sequences revealed high levels of similarity (> 94 %) between strains of the filamentous bacterium 'Candidatus Nostocoida limicola' and the cocci Tetrasphaera australiensis and Tetrasphaera japonica and the rod Tetrasphaera elongata, all isolated from activated sludge. These sequence data and their chemotaxonomic characters, including cell wall, menaquinone and lipid compositions and fingerprints of their 16S-23S rRNA intergenic regions, support the proposition that these isolates should be combined into a single genus containing six species, in the family Intrasporangiaceae in the Actinobacteria. This suggestion receives additional support from DNA-DNA hybridization data and when partial sequences of the rpoC1 gene are compared between these strains. Even though few phenotypic characterization data were obtained for these slowly growing isolates, it is proposed, on the basis of the extensive chemotaxonomic and molecular evidence presented here, that 'Candidatus N. limicola' strains Ben 17, Ben 18, Ben 67, Ben 68 and Ben 74 all be placed into the species Tetrasphaera jenkinsii sp. nov. (type strain Ben 74(T) = DSM 17519(T) = NCIMB 14128(T)), 'Candidatus N. limicola' strain Ben 70 into Tetrasphaera vanveenii sp. nov. (type strain Ben 70(T) = DSM 17518(T) = NCIMB 14127(T)) and 'Candidatus N. limicola' strains Ver 1 and Ver 2 into Tetrasphaera veronensis sp. nov. (type strain Ver 1(T) = DSM 17520(T) = NCIMB 14129(T)).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fungal infection in the eggs of freshwater fish is well known as a problematic disease. That isolation and recognition Saprolegnia fungi from fungal infected eggs of the rainbow trout in Mazandaran province was the aim of this research. For this purpose fungal infected eggs were examined from six fish farm in the fall and winter 2005-2006. The eggs with fungi were inoculated on SDA, CMA, GPagar and hemp seed and sesame seed cultures in sterile tap water at room temperature (18-24°C). In this study recognized three genera and six species Saprolegniaceae members, based on morphological characteristics which contain: Saprolegnia, Achlya, Brevilegnia. Four species were identified in the genus Saprolegnia; S.mixta, S.parasitica, S.moniliphera, S.lapponica and one species was identified in the genus Achlya; A.oblongata. S.parasitica was isolated from almost all the farms. In addition, another nine genera and species were identified; Penicillium, Aspergillus, Paeciliomyces, Acremonium, Fusarium oxysporum, F.solani , Alternaria, Helminthosporium, Mucor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The azoles are the class of medications most commonly used to fight infections caused by Candida sp. Typically, resistance can be attributed to mutations in ERG11 gene (CYP51) which encodes the cytochrome P450 14α-demethylase, the primary target for the activity of azoles. The objective of this study was to identify mutations in the coding region of the ERG11 gene in clinical isolates of Candida known to be resistant to azoles. We identified three new synonymous mutations in the ERG11 gene in the isolates of Candida glabrata (C108G, C423T and A1581G) and two new nonsynonymous mutations in the isolates of Candida krusei - A497C (Y166S) and G1570A (G524R). The functional consequence of these nonsynonymous mutations was predicted using evolutionary conservation scores. The G524R mutation did not have effect on 14α-demethylase functionality, while the Y166S mutation was found to affect the enzyme. This observation suggests a possible link between the mutation and dose-dependent sensitivity to voriconazole in the clinical isolate of C. krusei. Although the presence of the Y166S in phenotype of reduced azole sensitivity observed in isolate C. krusei demands investigation, it might contribute to the search of new therapeutic agents against resistant Candida isolates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The damaging of buildings and monuments by biological contamination is a cause of serious concern. Biocides based on chemical toxic compounds have been used to mitigate this problem. However, in the past decade many of the most effective biocides have been banned due to their environmental and health hazards. Therefore, proper remediation actions for microbiologically contaminated historic materials based on environmentally safe solution is of vital importance. Bacillus species are emerging as a promising alternative for built heritage treatment. They produce a great diversity of secondary metabolites with biological activity, well known to possess antagonistic activities against many fungal pathogens. In order to evaluate the antifungal activity of the novel biocides produced in our laboratory by cultures of selected bacterial strains, liquid interaction assays using four biodeteriogenic fungi were achieved, revealing a nearly 100% of inhibitory capacity to fungal proliferation. To confirm their effective safe toxicological properties, in vivo tests using two different biological models were performed. The lyophilized supernatant of the Bacillus culture broth showed no lethality against brine shrimp and also no toxicological effects in Swiss mice through administration of acute dose of 5000 mg/kg by oral gavage. In fact, the bioactive compounds were no lethal at the tested dose unlike Preventol® (commercial biocide) that induced acute toxicity with 10 times minor concentration dose administrated in the same conditions. Therefore, the new bioactive compounds that suppress growth of biodeteriogenic fungi on historical artworks, presenting at the same time no toxicity against other living organisms, constituting an efficient and green safe solution for biodegradation/biodeterioration treatment of Cultural Heritage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prosopis rubriflora and Prosopis ruscifolia are important species in the Chaquenian regions of Brazil. Because of the restriction and frequency of their physiognomy, they are excellent models for conservation genetics studies. The use of microsatellite markers (Simple Sequence Repeats, SSRs) has become increasingly important in recent years and has proven to be a powerful tool for both ecological and molecular studies. In this study, we present the development and characterization of 10 new markers for P. rubriflora and 13 new markers for P. ruscifolia. The genotyping was performed using 40 P. rubriflora samples and 48 P. ruscifolia samples from the Chaquenian remnants in Brazil. The polymorphism information content (PIC) of the P. rubriflora markers ranged from 0.073 to 0.791, and no null alleles or deviation from Hardy-Weinberg equilibrium (HW) were detected. The PIC values for the P. ruscifolia markers ranged from 0.289 to 0.883, but a departure from HW and null alleles were detected for certain loci; however, this departure may have resulted from anthropic activities, such as the presence of livestock, which is very common in the remnant areas. In this study, we describe novel SSR polymorphic markers that may be helpful in future genetic studies of P. rubriflora and P. ruscifolia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visceral leishmaniasis (VL) is a widely spread zoonotic disease. In Brazil the disease is caused by Leishmania (Leishmania) infantum chagasi. Peridomestic sandflies acquire the etiological agent by feeding on blood of infected reservoir animals, such as dogs or wildlife. The disease is endemic in Brazil and epidemic foci have been reported in densely populated cities all over the country. Many clinical features of Leishmania infection are related to the host-parasite relationship, and many candidate virulence factors in parasites that cause VL have been studied such as A2 genes. The A2 gene was first isolated in 1994 and then in 2005 three new alleles were described in Leishmania (Leishmania) infantum. In the present study we amplified by polymerase chain reaction (PCR) and sequenced the A2 gene from the genome of a clonal population of L. (L.) infantum chagasi VL parasites. The L. (L.) infantum chagasi A2 gene was amplified, cloned, and sequenced in. The amplified fragment showed approximately 90% similarity with another A2 allele amplified in Leishmania (Leishmania) donovani and in L.(L.) infantum described in literature. However, nucleotide translation shows differences in protein amino acid sequence, which may be essential to determine the variability of A2 genes in the species of the L. (L.) donovani complex and represents an additional tool to help understanding the role this gene family may have in establishing virulence and immunity in visceral leishmaniasis. This knowledge is important for the development of more accurate diagnostic tests and effective tools for disease control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative technique for the fabrication of disposable electrochemical microcells containing working, reference and auxiliary electrodes on a single device is reported. The procedure is based on thermal-transfer of toner masks onto CD-R (recordable compact discs) gold surfaces to define the layout of the electrodes (contour). In a subsequent step, the layout is manually painted with a permanent marker pen. The unprotected gold surface is conveniently etched (chemical corrosion) and the ink is then easily removed with ethanol, generating gold surfaces without contamination. The final and reproducible area of the electrodes is defined by heat transference of a second toner mask. Silver epoxy is deposited on one of the gold bands which is the satisfactorily used as reference electrode. These microcells were electrochemically characterized by cyclic, linear, and square wave voltammetry, and several electroactive species were used as model systems. The area reproducibility of the electrodes for different microcells was studied and a relative standard deviation better than 1,0% (n = 10) was obtained. Disposable electrochemical microcells were successfully used in analysis of liquid samples with volumes lower than 200 µL and good stability and reproducibility (RSD less than 2.0%) were achieved. These microcells were also evaluated for quantification of paracetamol and dipyrone in pharmaceutical formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cerradomy's is a monophyletic genus that includes four known species, Cerradomys subflavus, C maracajuensis, C. marinhus, and C. scotti, distributed throughout the open vegetation belt across South America, from northeastern Brazil to southeastern Bolivia, and from eastern to northwestern Paraguay. We revised the status of the species currently assigned to this genus by analyzing skins, skulls, karyotypes, and cytochrome b DNA sequences. We also described two novel species, one distributed in the Brazilian states of Minas Gerais, Bahia, and Sergipe, and the other in the states of Paraiba, Pernambuco, Piaui, Ceara, and Maranhao. Molecular analysis suggested the following phylogenetics arrangement: (((C. subflavus-C. sp.n.2) C. sp.n.1) C scotti)(C. marinhus-C. maracajuensis)). Apparently, both novel species inhabit the Caatinga domain and penetrated the coastal Atlantic rainforest, differing from the remaining congeneric species that are typical open-area inhabitants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the genetic and physiological variability of Moniliophthora perniciosa obtained from healthy and diseased branches of cacao (Theobroma cacao) plants. The diversity of the isolates was evaluated by RAPD technique and by studies of virulence and exoenzyme production. The genetic variability of endophytic and pathogenic M. perniciosa was evaluated in association with pathogenicity assays. RAPD analysis showed eight genetic groups, which were not related to plant disease status (healthy versus diseased branches). Isolates from cacao were included in three groups, excluding isolates from other host plants. Pathogenicity and enzyme analysis showed that the virulence of the isolates is not related to exoenzyme production. This is the first evidence that M. perniciosa colonizes healthy parenchymatic tissues, showing that endophytic behavior may occur in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: It has been well documented over past decades that interaction of pathogens with the extracellular matrix (ECM) plays a primary role in host cell attachment and invasion. Adherence to host tissues is mediated by surface-exposed proteins expressed by the microorganisms during infection. The mechanisms by which pathogenic leptospires invade and colonize the host remain poorly understood since few virulence factors contributing to the pathogenesis of the disease have been identified. Whole-genome sequencing analysis of L. interrogans allowed identification of a repertoire of putative leptospiral surface proteins. Results: Here, we report the identification and characterization of a new leptospiral protein that exhibits extracellular matrix-binding properties, called as Lsa21 (leptospiral surface adhesin, 21 kDa). Compatible with its role in adhesion, the protein was shown to be surface-exposed by indirect immunofluorescence. Attachment of Lsa21 to laminin, collagen IV, and plasma fibronectin was specific and dose dependent. Laminin oxidation by sodium metaperiodate reduced the protein-laminin interaction in a concentration-dependent manner, indicating that laminin sugar moieties are crucial for this interaction. The gene coding for Lsa21 is present in pathogenic strains belonging to the L. interrogans species but was not found in the saprophytic L. biflexa serovar Patoc strain Patoc 1. Loss of gene expression occurs upon culture attenuation of pathogenic strains. Environmental factors such as osmolarity and temperature affect Lsa21 expression at the transcriptional level. Moreover, anti-Lsa21 serum labeled liver and kidney tissues of human fatal cases of leptospirosis. Conclusion: Our data suggest a role of Lsa21 in the pathogenesis of leptospirosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: During mating, insect males eject accessory gland proteins (Acps) into the female genital tract. These substances are known to affect female post-mating behavior and physiology. In addition, they may harm the female, e. g., in reducing its lifespan. This is interpreted as a consequence of sexual antagonistic co-evolution. Whereas sexual conflict abounds in non-social species, the peculiar life history of social insects (ants, bees, wasps) with lifelong pair-bonding and no re-mating aligns the reproductive interests of the sexes. Harming the female during mating would negatively affect male fitness and sexual antagonism is therefore not expected. Indeed, mating appears to increase female longevity in at least one ant species. Acps are presumed to play a role in this phenomenon, but the underlying mechanisms are unknown. In this study, we investigated genes, which are preferentially expressed in male accessory glands of the ant Leptothorax gredleri, to determine which proteins might be transferred in the seminal fluid. Results: By a suppression subtractive hybridization protocol we obtained 20 unique sequences (USs). Twelve had mutual best matches with genes predicted for Apis mellifera and Nasonia vitripennis. Functional information (Gene Ontology) was available only for seven of these, including intracellular signaling, energy-dependent transport and metabolic enzyme activities. The remaining eight USs did not match sequences from other species. Six genes were further analyzed by quantitative RT-PCR in three life cycle stages of male ants. A gene with carboxy-lyase activity and one of unpredicted function were significantly overexpressed in accessory glands of sexually mature males. Conclusions: Our study is the first one to investigate differential gene expression in ants in a context related to mating. Our findings indicate that male accessory glands of L. gredleri express a series of genes that are unique to this species, possibly representing novel genes, in addition to conserved ones for which functions can be predicted. Identifying differentially expressed genes might help to better understand molecular mechanisms involved in reproductive processes in eusocial Hymenoptera. While the novel genes could account for rapidly evolving ones driven by intra-sexual conflict between males, conserved genes imply that rather beneficial traits might get fixed by a process described as inter-sexual cooperation between males and females.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results: We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion: We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uncertainty about the possible involvement of a luciferase in fungal bioluminescence has not only hindered the understanding of its biochemistry but also delayed the characterization of its constituents. The present report describes how in vitro light emission can be obtained enzymatically from the cold and hot extracts assay using different species of fungi, which also indicates a common mechanism for all these organisms. Kinetic data suggest a consecutive two-step enzymatic mechanism and corroborate the enzymatic proposal of Airth and Foerster. Finally, overlapping of light emission spectra from the fungal bioluminescence and the in vitro assay confirm that this reaction is the same one that occurs in live fungi.